Methods of solution of the
finite difference equations.
Parabolic equations-1



A typical parabolic equation is the unsteady diffusion problem characterized by
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An explicit finite difference equation scheme for (4.2.1) may be written in the forward
difference in time and central difference in space (FTCS) as (see Figure 4.2.1a)
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where d is the diffusion number
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By definition, (4.2.2) is explicit because u:f”“' at time step n + 1 can be solved explicitly
in terms of the known quantities at the previous time step rn, thus called an explicit
scheme.
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and substituting (4.2.4) into (4.2.2a), we obtain
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Any finite mesh function, such as € or the full solution «}, can be decomposed into a
Fourier series
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with I = /—1, £ being the amplitude of the j'" harmonic, and the spatial phase angle
& is given as
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with & = 7 corresponding to the highest frequency resolvable on the mesh, namely the
frequency of the wavelength 2Ax. Thus
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Substituting (4.2.15) into (4.2.6) yields
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The computational scheme is said to be stable if the ampiitude of any error harmonic
€" does not grow in time, that 1s, if the following ratio holds:
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where g = £"*! /g7 is the amplification factor, and is a function of time step At, frequency,
and the mesh size Ax. It follows from (4.2.16) that
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or
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Thus, the stability condition is
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Since the maximum of 1 — cos ¢ is 2, we arrive at, for stability,
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OTHER EXPLICIT SCHEMES
Richardson Method
If the diffusion equation (4.2.1) is modeled by the form
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This is known as the Richardson method and is unconditionally unstable.

Dufort-Frankel Method
The finite difference equation for this method is given by
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This scheme can be shown to be unconditionally stable by the von Neumann stability
analysis.



