

«Радиологические измерения»

Лекция 1. Источники ионизирующих излучений.

и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А.

Радиоактивность в природе

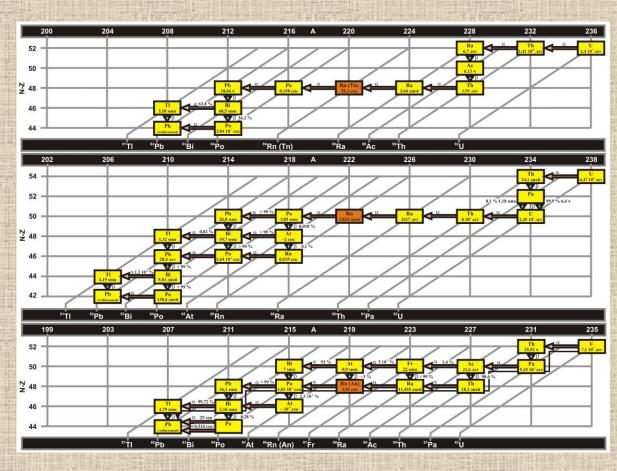
- Примордиальные существует с момента создания Земли
- Космогенные образуются в результате взаимодействия космических лучей
- Произведено человеком усиленно или сформировано в результате действий человека

Примордиальные Нуклиды

Нуклид	Период полураспада	Естественная радиоактивность
235 U	7.04 x 10 ⁸ лет	0,711% всего природного урана
238U	4.47 x 10 ⁹ лет	99,275% всего природного урана U; от 0,5 до 4,7 частей на миллион общего U в обычных породах
²³² Th	1.41 x 10 ¹⁰ лет	от 1,6 до 20 частей на миллион в обычных породах

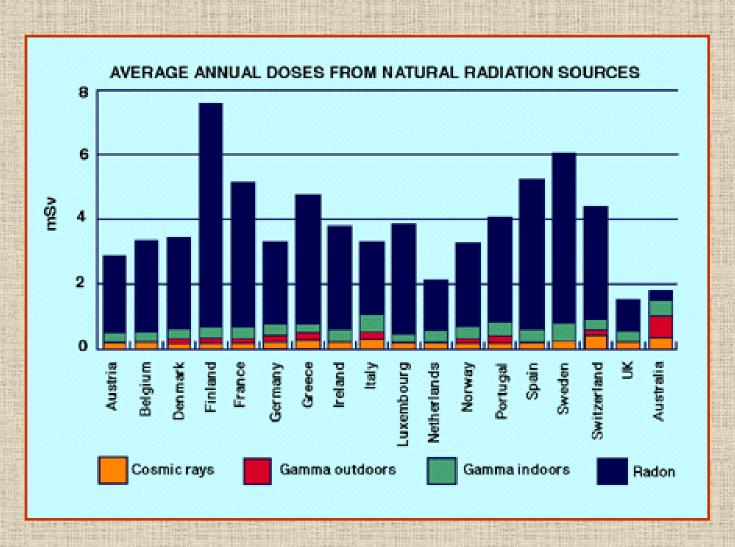
Примордиальные Нуклиды

Нуклид	Период полураспада	Естественная радиоактивность
²²⁶ Ra	1,600 лет	16 Бк / кг в известняке и 48 Бк / кг в в вулканической породе
²²² Rn	3.82 дней	Благородный газ; среднегодовые концентрации в воздухе в США от 0,6 до 28 Бк/м ³
⁴⁰ K	1.28 x 10 ⁹ лет	От 0,037 до 1,1 Бк/г в почве

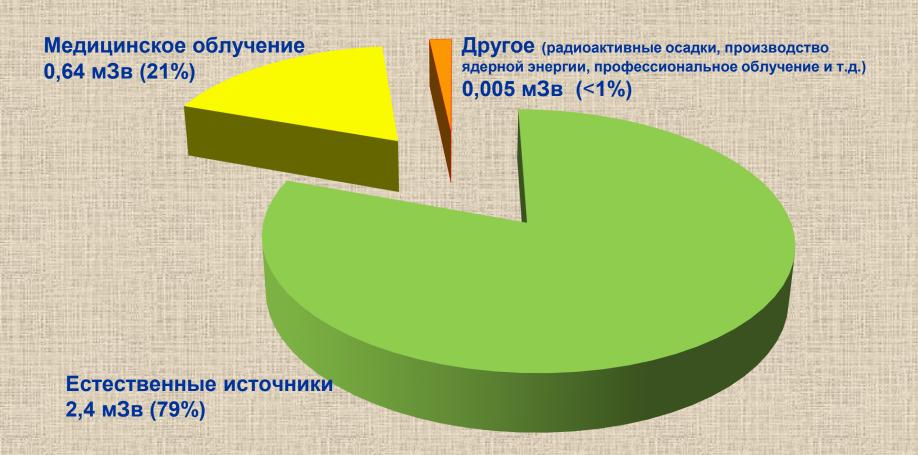

Радиационный фон

В природе существуюттри «цепочки»радиоактивного распада :

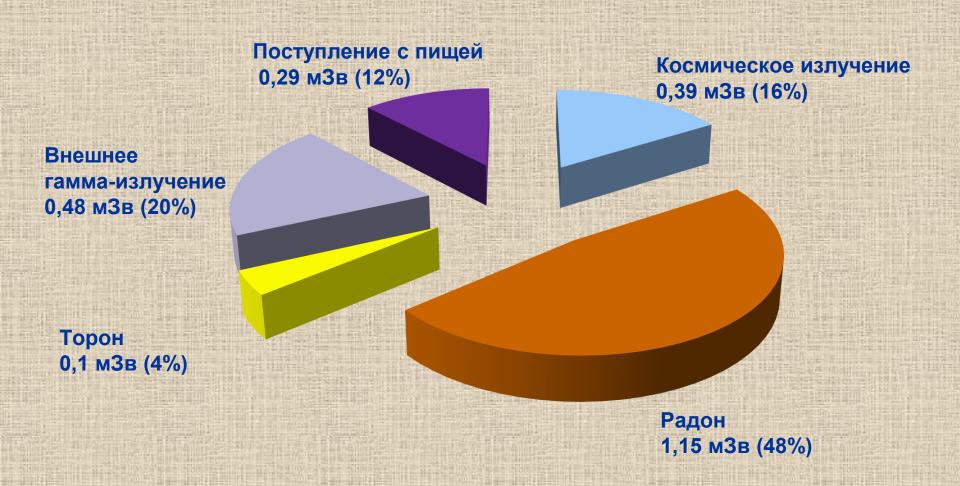
≽урановый ряд, начиная с ²³⁸U


▶серия тория, происходящая из ²³²Th

▶актиниевый ряд, происходящий от ²³⁵U

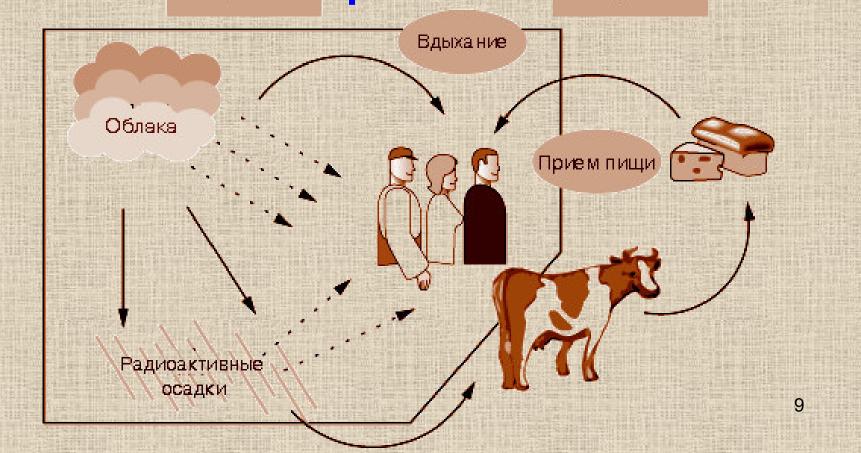


Когда-то давно существовала также серия нептуния, которая возникла из ²⁴¹Ри, период полураспада которой составлял всего 14 лет.
 Единственным оставшимся членом этого ряда является ²⁰⁹Ві с периодом полураспада 2Е18 лет.


Статистика естественного радиационного фона по странам

Средняя годовая доза облучения населения

Средняя годовая доза облучения от природных источников



Человек подвергается облучению двумя способами:

Радиоактивные вещества могут находиться вне организма и облучать его снаружи -

Внешнее облучение

Радиоактивные вещества могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма - Внутренне облучение

Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие.

Радиационный фон в пределах:

<u>0,1 – 0,2 мкЗв/ч (10 – 20 мкР/ч</u>) считается <u>нормальным;</u>

<u>0,2 – 0,6 мкЗв/ч (20 – 60 мкР/ч</u>) считается <u>допустимым</u>;

<u>0,6 – 1,2 мкЗв/ч (60 – 120 мкР/</u>ч) считается <u>повышенным.</u>

Высота над уровнем моря

- уровень моря (нулевая отметка)
- Республика Беларусь (2 000 м)
- Кавказ (4 000 м)
- Гималаи (6 000 м)
- Самолет (12 000 м)

Радиационный фон

3 - 6 мкР/ч

10 - 20 мкР/ч

30 - 40 мкР/ч

до 100 мкР/ч

500 мкР/ч

ЕСТЕСТВЕННЫЕ ИСТОЧНИКИ РАДИАЦИИ

Естественный (природный) радиационный фон 2,42 мЗв/год

<u>Природный</u> радиационный фон

Космические излучения 0,39 мЗв/год

Технологически измененный естественный радиационный фон

- Тепловая энергетика
- Индустрия строительных материалов и т.д.

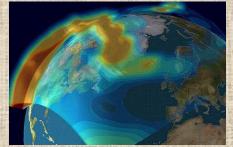
Излучения земного происхождения 2,03 мЗв/год

0,48 м3в/год — внешнее облучение; 1,55 м3в/год - внутреннее облучение

Космические излучения – 0,39 м3в/год

Солнечные излучения

рождаются на Солнце во время солнечных вспышек



Галактические излучения

Первичное излучения

Вторичное излучения - 0,38 мЗв/год (внешнее облучение)

Космогенные радионуклиды - 0,01 мЗв/год (внутреннее облучение)

поток частиц, падающих в земную атмосферу и идущих из глубины космоса со скоростью света.

состоит из протонов 92 %, альфа-частиц 6 %, ядра легких элементов (Li, Be, B, C, N, O, F), электроны, нейтроны и фотоны - 2 %.

образуется в результате ядерных взаимодействий между первичным излучением с ядрами атомов, входящих в состав земной атмосферы.

У поверхности Земли состоит в основном из фотонов, электронов, позитронов, других ядерных частиц, а также небольшой доли нейтронов.

образуются в результате взаимодействия первичного и вторичного излучений с ядрами элементов атмосферы.

 $^{3}_{1}H$

 $^{10}_{4}\mathrm{Be}$

 $^{14}_{6}$ C

 $\frac{22}{11}$ Na

|24 |11 Na $\frac{35}{16}$ S

36 17Cl

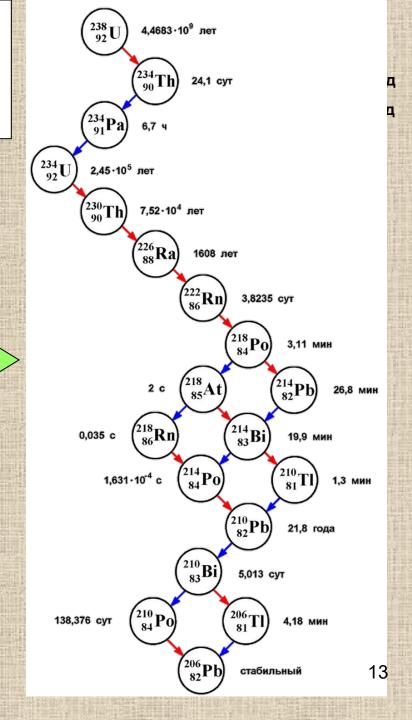
 $|_{17}^{39}$ Cl

и другие.

Излучения земного происхождения 2,03 мЗв/год

0,48 мЗв/год — внешнее облучение;

1,55 мЗв/год - внутреннее облучение


Первая группа естественных радионуклидов:

радионуклиды уранорадиевого и ториевого семейств, которые берут свое начало от урана-238 и тория-232

(всего 82 радионуклида)

1,58 мЗв/год

Вклад радона-222 и торона-220 1,25 мЗв/год

Вторая группа естественных радионуклидов: это 11 долгоживущих радионуклидов, находящихся вне этих семейств (калий-40, кальций-48, рубидий-87, цирконий-96, индий-115, лантан-138, церий-142, неодим-144, самарий-147, лютеций-178, рений-187) 0,45 м3в/год

Калий-40 - период полураспада равен 1,4-10⁹ лет. Внешнее / Внутреннее облучение 0,12 / 0,18 (м3в/год)

Rn – (радон) находится в восьмой группе периодической таблицы химических элементов и представляет собой инертный одноатомный газ не имеющий вкуса и запаха, в 7,5 раза тяжелее воздуха.

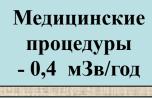
Имеется три изотопа (α - излучатели):

²¹⁹Rn (актинон) – производное ²³⁵U;

²²⁰Rn (торон) – производное ²³²Th;

²²²Rn (радон) – производное ²³⁸U.

Наибольшую значимость имеют изотопы ²²⁰Rn и ²²²Rn.


Образование их зависит от концентрации в материалах ²²⁸Ra и ²²⁶Ra. Их много в горных породах, особенно в гранитах.

Механизм перемещения – молекулярная диффузия, активный перенос в горизонтальном направлении воздуха.

15

2. Искусственные источники ионизирующих излучений.

Искусственный радиационный фон - 0,421 мЗв/год

Радиоактивные осадки (испытания ядерного оружия) - 0,02 мЗв/год

Атомная энергетика - 0,001 м3в/год

Строительные материалы

- Традиционные строительные материалы дерево, кирпич, бетон имеют низкую активность, содержат уран и торий. Доза при проживании в деревянном доме 0,5 в кирпичном -1,0 и в бетонном -1,7м3в/год.
- Допустимые уровни удельной активности:при Ам менее 370 Бк/кг стройматериалы используют без ограничений; при 370-740 Бк/кг в дорожном строительстве на территории населенных пунктов.

Дозы, получаемые от различных источников излучения

Вид облучения	Эффективная эквивалентная доза
Полет в течении одного часа на сверхзвуковом самолете (высота полета 18–20 км)	10-30 мкЗв
Полет в течении 1 сут на орбитальном космическом корабле (без вспышек на солнце)	0,18-0,35 мЗв
Прием радоновой ванны	0,01-1 мЗв
Флюорография	0,1-0,5 мЗв
Рентгеноскопия грудной клетки	0,1-1 м3в
Рентгенография зубов	0,03-3 мЗв
Рентгеновская номография	5-100 мЗв
Рентгеноскопия желудка, кишечника	0,1-0,25 мЗв
Лучевая гамма-терапия после операции	0,2-0,25 Зв

Область применения и вид используемых закрытых источников					
ионизирующего излучения в различных областях					
Область применения	Вид источника излучения				
Медицина и биология	Ускорители заряженных частиц, рентгеновские и гамма-				
	аппараты, гамма и бета-источники				
Сельское хозяйство	Мощные гамма-установки, химические удобрения				
Пищевая	Мощные гамма-установки, радиоизотопные приборы				
промышленность	(уровнемеры)				
Химическая и легкая	Мощные гамма-установки, радиоизотопные приборы				
промышленность	(уровнемеры, толщиномеры, прибо-ры для снятия				
	статических зарядов)				
Металлургия	Ускорители заряженных частиц, рентгеновские				
	аппараты, аппараты для гамма-дефектоскопии,				
	радиоизотопные приборы (уровнемеры)				

заряженных частиц,

заряженных частиц,

аппараты, мощные гамма-установки, нейтронные и бета-

аппараты, аппараты для гамма-дефектоскопии

Нейтронные и гамма-источники,

рентгеновские

радиоизотопные

рентгеновские

	аппараты, гамма и бета-источники		
Сельское хозяйство	Мощные гамма-установки, химические удобрения		
Пищевая	Мощные гамма-установки, радиоизотопные приборь		
промышленность	(уровнемеры)		

Ускорители

Ускорители

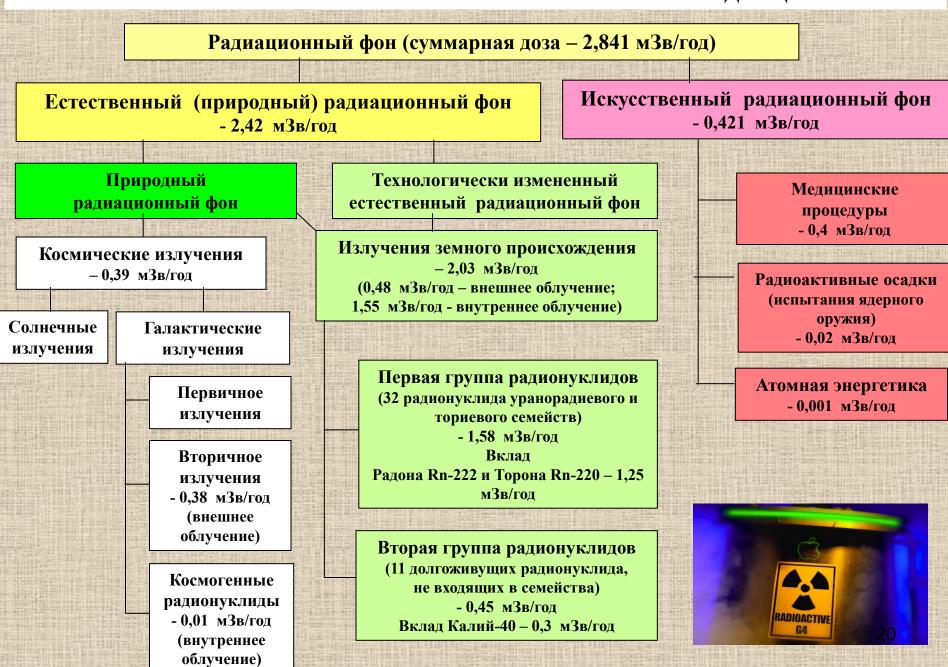
установки

приборы (уровнемеры)

Нейтронные источники

Строительная

исследования


Ядерная энергетика

индустрия

Геология

Научные

ЕСТЕСТВЕННЫЕ И ИСКУССТВЕННЫЕ ИСТОЧНИКИ РАДИАЦИИ

СПАСИБО ЗА ВНИМАНИЕ!

