Lecture 9
Finite-difference methods
of solutions of the

incompressible flows.



ARTIFICIAL COMPRESSIBILITY METHOD

The governing equations for incompressible viscous flows, known as the incompressible
Navier-Stokes system of equations, are written in nondimensionalized form as
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where the following nondimensional quantities are used:
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with asterisks implying the physical variable and Re being the Reynolds number.
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where § is an artificial density, equated to the product of artificial compressibility factor
B and pressure,

p=B"'p (5.2.4)

Here 22 — 0 at the steady state and 7 is a fictitious time.



With these definitions and combining (5.2.1-5.2.4), we may write the incompressible
Navier-Stokes system of equations in the form
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Let us now investigate the eigenvalues of A;,

A, — NI =0



dq , OF , 0G 1

u a’v 0 0O
E[ ] [u2+p : GE[ Uy ] D:—'—:[O 1 O].
v . vi+4p 0 0 1

0 a "0 0 a? \ , )
As[l 2u 0] B=|0 v u]. F=Aq—uDq u G=Bq—vDq.
0O v u -1 0 2v

A“”“ +0.5L, (F"+F""') +0.5L,(G" + G"*') —

__0.5D
Re (Lxx + Lyy) (qn + qn+l) O’

Aqn-i-l — qn+l — qn

] _— [ 2

L .4"=(97_,,—24q7 . + 4}, ,)/Ax"

Fn+1 ~ Fn+An Aqn+l, Gn+1 ~ Gn_l_ Bn Aqn+l, qn+l ~ qn +Aqn+l.
{1 14 0.5 A [LxA” + LB — o (L + Lyy)]} Aq+! = RHS,

RHS = A¢[(D/Re) (Lyx + L,,) q* — L,F — L,Gl.



ou |

dx ' Jy =0,
du ou®? , 0 Op 1 (0% d%v
a5 T ox 1 0y (uv) - dx Re { oxF T Gy"’}’
ov 0 dv? ap 1 0%v 0%v
ar T ax W)+ 5y - ay—Re{ax2+0y2}‘

- SEMI-{MPLICIT METHOD FOR PRESSURE-LINKED EQUATIONS (SIMPLE)
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Figure 5.3.1 Computational domain for staggered grid.
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in the algorithm known as SIMPLE [Patankar and Spalding, 1972]. In this method, the
predictor-corrector procedure with successive pressure correction steps is used:

p=Dp+p (5.3.1)

where p is the actual pressure, P is the estimated pressure, and p’ is the pressure
correction. Likewise, the actual velocity components in two-dimensions are
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The pressure corrections are related to the velocity corrections by approximate
momentum equations,
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Combining (5.3.2) and (5.3.4) and substituting the result into the continuity equation,
we obtain the so-called pressure-correction Poisson equation of an elliptic form,
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where we set + g—‘; = 0 to enforce the mass conservation at the current iteration step.

An iterative procedure is used to obtain a solution as follows [Raithby and Schneider,
1979].

(a) Guess the pressure p at each grid point. o

(b) Solve the momentum equation to find V; at the staggered grid (i +1/2,
i—1/2,j4+1/2, j—1/2), discretized in control volumes and control surfaces
(Section 1.4) as shown in Figure 5.3.1.

(c) Solve the pressure correction equation (5.3.5) to find p’ at (i, j), (z j—1),
(i,j+1),G—=1,j),G+1,/). Since the corner grid points are avoided, the
scheme is “semi-implicit,” not fully implicit, as shown in Figure 5.3.1.

(d) Correct the pressure and velocity using (2.2.9b), (5.3.2), and (5.3.4).
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with p being the dynamic viscosity.
(e) Replace the previous intermediate values of pressure and velocity (p, v;) with

the new corrector values (p, v;) and return to (b).
(f) Repeat Steps (b) through (¢) until convergence.
Often the convergence of the above process is not satisfactory because of the ten-
dency for overestimation of p’. A remedy to this difficulty may be found by the use of
under-relaxation parameter «,

p=TP+ap (53.7)
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PRESSURE IMPLICIT WITH SPLITTING OF OPERATORS

The governing equations consist of the momentum equation and pressure correction
cquation written as follows:
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where s;; ;; refers to the derivatives of the sum of convection and viscous diffusion terms,
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with v% ; set equal to zero in (5.3.17) in order to enforce the conservation of mass.

(c) Corrector 11
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with vi*, = 0 being once again enforced in (5.3.19). Thus, in the above process, there
are no iterative steps involved.



MARKER-AND-CELL (MAC) METHOD

This is one of the earliest methods developed for the solution of incompressible flows,
although its use in the original form is no longer pursued, but it has been altered to
other more efficient schemes. The basicidea of MAC as originally introduced by Harlow
and Welch [1965] is one of the pressure correction schemes developed on a staggered
mesh, seeking to trace the paths of fictitious massless marker particles introduced on
the free surface. The solution is advanced in time by solving the momentum equations
for velocity components using the current estimates of the pressure distributions. The
pressure is improved by numerically solving the Poisson equation,
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Here, the correction in pressure is required to compensate for the nonzero dilatation
D (5.3.38) at the current iteration level. The Poisson equation is then solved for the
revised pressure field. The improved pressure may then be used in the momentum
cquations for a better solution at the present time step. If D does not vanish, cyclic
process of solving the momentum equations and the Poisson equation is repeated until
the velocity field is divergent free.
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