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Quasilinearization of Euler Equations
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Alternatively, the Euler equations may be written in nonconservation form for isen-
tropic flow in terms of the primitive variable V as
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Introducing a transformation between the conservation and nonconservation
variables,
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Lax-Friedrichs First Order Scheme
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It can be shown that the von Neumann analysis leads to the stability condition,
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The stability condition is shown to be, for Ax = Ay
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CENTRAL SCHEMES WITH INDEPENDENT SPACE-TIME DISCRETIZATION
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where various finite difference schemes of the time derivative term may be applied. The
two level time integration of (6.2.50) leads to
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with § > —1/2,0 > 1/2(§ + 1) for linear stability.
The two-level integration scheme takes the form
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Introducing a central discretization, we obtain
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Notice that each step is a tridiagonal system along the x lines for AU and along the y
lines for AU,



FIRST ORDER UPWIND SCHEMES Flux Vector Splitting Method
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which will allow the split flux components to be written as follows:
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SECOND ORDER UPWIND SCHEMES MUSCL
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with ** representing the second order scheme and
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where the superscripts L and R refer to the left and right sides at the considered bound-
ary and k denotes a weight (xk = —1, 0, 1) leading to various extrapolation schemes
Figure 6.2.5a,b).

The final solution is obtained as
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U '/ Second order upwind schemes in space and time
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Figure 6.25 Variable extrapolation. (a) Piecewise linear representation

within cells. (b) Linear one-sided extrapolation of interface values for
Kk=-1,



SECOND ORDER UPWIND SCHEMES WITH HIGH RESOLUTION (TVD SCHEMES)

Entropy condition — A decrease of entropy associated with expansion shocks must
not be admitted.

Monotonicity condition — This condition must be enforced to prevent oscillatory
behavior in the numerical scheme.

Total Variation Diminishing (TV D) —The total variation of any physically admis-
sible solution must not be allowed to increase in time.

(b) Monotonicity Condition. A monotonicity condition refers to the nonoscillatory be-
havior of the numerical solution. Consider the solution of Euler equation to be in the
form
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The condition for monotonicity is given by
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This represents a severe limitation, resulting in a scheme that is too diffusive. A
compromise is the total variation diminishing concept, described next.

A numerical scheme is said to be total variation diminishing (TVD) if
TVW™*') < TV(u") vu)= 3 U

Let us consider the semi-discretized system
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. TVD Schemes with Limiters
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Here, the variations in the second and third terms within the square brackets will be
limited as follows:
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Now the TVD conditions are obtained by rewriting
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Thus, the TVD conditions are
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with the following constraints:

Y(r)>0 forr=>0
U(r)=0 forr <0

which may be generalized in the following form for all values of r and s:

W(r)
r

—Y(s) <2

Thus, the sufficient condition becomes
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Various limiters for second order schemes are summarized below:

(a) TVD regions for ¥ (r) in general
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(b) Van Leer’s limiter ¥ = — +|r|

(¢) Minimum modulus (minmod) W(r) = {

min(r, 1) ifr >0
0 ifr <0
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(d) Roe’s Superbee limiter W(r) = max[0, min(2r, 1), min(r 2)]
(e) General B-limiters ¥ = max[0, min(Br, 1), min(r, B)], 1 < B
(f) Chakravarthy and Osher limiter ¥(r) = max[0, min(r, B)], 1

In these limiters, we observe the following features:
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(i1) If r > 1, the contribution (i; — u;_;) remains unchanged.
(iii) If the slopes of consecutive intervals change sign, then the updated point §
receives no contribution from the upstream interval.



Explicit TVD Schemes of First Order Accuracy in Time.
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Thus, the TVD condition
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with 0 < o < 2. The CFL condition for this case is

lo| < ——
2+«

The stability conditions for various limiters are
minmod limiter: |o| < 3

superbee limiter: o] < 5

and so on.



ESSENTIALLY NONOSCILLATORY SCHEME

In the ENO scheme, high-order accuracy is obtained, whenever the solution is
smoothed by means of a piecewise polynomial reconstruction procedure, yielding high
order pointwise information from the cell averages of the solution. When applied to
piecewise smooth initial data, this reconstruction enables a flux computation which is

of high order accuracy, whenever the function is smooth, and avoids nonconvergence.
The purpose of ENO 1s to achieve uniformly high order accuracy by avoiding the

growth of spurious oscillations at shock discontinuities known as Gibb’s phenomena.
To this end, we employ piecewise polynomial reconstruction in the numerical solution
based on an adaptive stencil. Such stencil is chosen according to the local smoothness
of the flow variable.
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with #; = x;.1,2 — x;_12. Let us now reconstruct u(x) fromu; by interpolating the prim-
itive function U(x),
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reconstruction polynomial of the form

R(x,u) = d H (X, U)

where, for cell x;_1,; and x; 41,2, H,(x, U) represents the mth degree polynomial that
interpolates the values of U;.1/; at m+ 1 successive points x;y12(jm < j < jm +m)
including x;_1» and x;11,2. Thus, our objective is to choose a stencil with H,(x, U)
being the smoothest. This can be extracted from a table of divided differences of U(x)



