

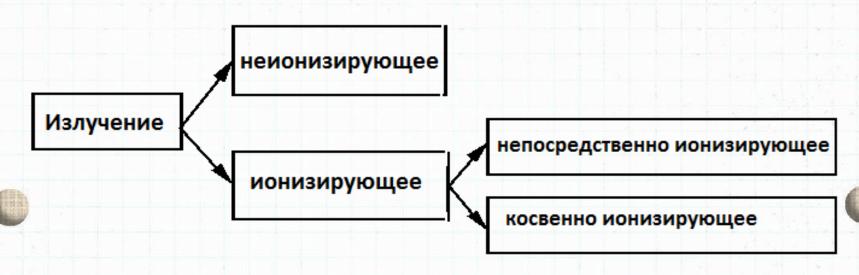
«Радиологические измерения»

Лекция 6. Физические основы дозиметрии.

и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А. Радиационная безопасность населения - состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения.

Радиационный риск

Вероятность возникновения у человека или его потомства какого-либо вредного эффекта в результате облучения.

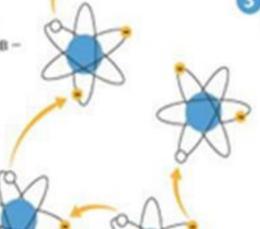

Рассматриваются следующие эффекты:

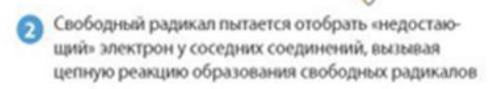
- Детерминированные (пучевая болезнь, пучевой дерматит, пучевая катаракта)
- Стохастические (зпокачественные опухоли, пейкозы, наспедственные болезни)

Основные принципы

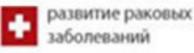
- Для обеспечения радиационной безопасности при нормальной эксплуатации источников излучения необходимо руководствоваться следующими основными принципами:
- Непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников излучения (принцип нормирования);
- запрещение всех видов деятельности по использованию источников излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным облучением (принцип обоснования);
- поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника излучения (принцип оптимизации).

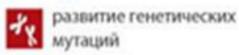
- □ Ионизирующее излучение любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков.
- Непосредственно ионизирующее излучение, состоящее из заряженных частиц (электроны, протоны, альфа-частицы, бета-частицы и др.)
- **Косвенно ионизирующее излучение**, состоящее из незаряженных частиц (нейтроны, фотоны), которые могут создавать непосредственно ионизирующее излучение или вызвать ядерные превращения


Воздействие радиации на организм человека


Ионизация, создаваемая жестким излучением, приводит к образованию в клетках свободных радикалов – атомов и молекул с «нехваткой» электрона

Нарушается целостность клеток и молекул ДНК





Результатом воздействия радиации становится:

массовая гибель клеток

Применяются дозиметрические величины трех типов:

- а) величины, описывающие интегральный по времени поток частиц;
- б) величины, описывающие интегральный по времени поток энергии, переносимый частицами через вещество, независимо от степени поглощения этого потока;
- в) величины, описывающие удельное поглощение энергии веществом.

Доза поглощенная (D) - величина энергии ионизирующего излучения, переданная веществу:

$$D = \frac{d\overline{W}}{dm}$$

Грей (Гр) - единица поглощенной дозы.

$$1 \Gamma p = \frac{1 \, \text{Дж}}{1 \, \text{кг}}$$

рад – (radiation absorbed dose) внесистемная единица (1 рад = 100 эрг/г)

Доза эквивалентная - для оценки биологического действия при хроническом облучении человека в малых дозах. Зиверт (Зв) — единица эквивалентной дозы

$$H_{T,R} = W_R D_{T,R}$$

бэр – внесистемная единица 1 3в = 100 бэр.

Значения коэффициентов качества W_R:

Фотоны любых энергий	1
Электроны и мюоны любых энергий	1
Нейтроны < 10 кэВ	5
от 10 до 100 кэВ	10
от 0,1 до 2 МэВ	20
от 2 до 20 Мэ В	10
более 20 МэВ	5
Протоны > 2 МэВ	2
Альфа-частицы, осколки деления, тяжелые ядра	20

Доза эффективная (*E*) – величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности (Зиверт (Зв))

$$E = \sum_{T} W_{T} \cdot H_{T}(\tau)$$

Значения коэффициентов $качества W_{T}$:

	взвешивающие
	коэффициенты
Гонады	0.08
Костный мозг (красный)	0.12
Толстая кишка	0.12
Легкое	0.12
Желудок	0.12
Мочевой пузырь	0.04
Молочная железа	0.12
Печень	0.04
Пищевод	0.04
Щитовидная железа	0.01
Поверхность кости	0.01
Остальные органы	0.12
(надпочечники, почки, мышцы,	
верхний отдел толстой кишки,	тонкая кишка,
поджелудочная железа, селезе	
матка, головной мозг)	

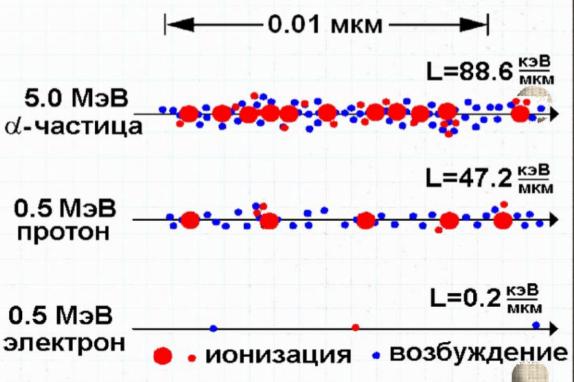
В качестве количественной меры воздействия косвенно ионизирующего излучения (ИИ) с любым веществом вводится понятие Керма (Kinetic Energy Released per unit MAss). Она равна отношению полной кинетической энергии всех частиц dE, возникающих под действием косвенно ИИ в элементарном объеме к массе этого объема dm. Единица измерения Гр (Дж/кг).

$$K = \frac{dE}{dm}$$

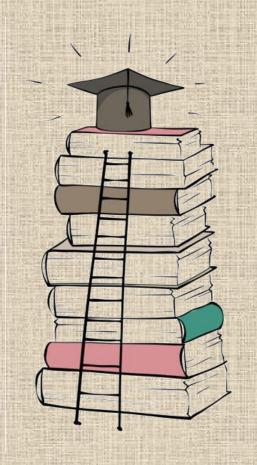
Экспозиционная доза (X) — это количественная характеристика фотонного излучения, которая основана на его ионизирующем действии в сухом атмосферном воздухе и представляет собой отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объёме воздуха с массой dm, полностью остановились в воздухе, к массе воздуха в указанном объёме dm:

$$X = \frac{dQ}{dm}$$

Единица экспозиционной дозы в СИ — кулон на килограмм (Кл/кг).


Внесистемной единицей **ЭКСПОЗИЦИОННОЙ ДОЗЫ** является рентген, при котором суммарный заряд dQ равен одной электростатической единице количества электричества в 0,001293 г воздуха (0,001293 - это масса 1 см³ атмосферного воздуха при 0°С и давлении 760 мм рт. ст.) 1 $P = 2,58 \cdot 10^{-4}$ Кл/кг

Х(Р) соответствует 0,95 *рад* для биоткани.


Поэтому с точностью 95% ХвРи В рад совпадают

Величина **ЛПЭ**, L, количественно характеризует первопричину возникновения радиационных эффектов — передачу энергии от частицы веществу. Рассматривают ЛПЭ, идущие на образование ионизационных эффектов и структурных нарушений.

- В оценках радиационных эффектов, возникающих при воздействии заряженных частиц космического пространства, значения ЛПЭ приравнивают к удельным потерям энергии, dE/dx, средней энергии, которую частица теряет на единице своего пути.
- Единицы измерения ЛПЭ -МэВ/см или МэВ/(г/см²)

СПАСИБО ЗА ВНИМАНИЕ!

