Краткая информация о проекте

Наименование	АР25794147 «ГИС-моделирование урожайности озимых зерновых
Transferobattic	культур в южных регионах Казахстана с учётом данных
	дистанционного зондирования в условиях изменения климата»
Актуальность	Проект по моделированию урожайности озимых зерновых культур
ARTYMIBHOCIB	на основе данных дистанционного зондирования и современных
	_
	геоинформационных систем (ГИС) для Туркестанской области
	Казахстана имеет несколько ключевых предпосылок.
	Туркестанская область характеризуется разнообразием
	агроэкологических условий, агроклиматических ресурсов, за
	последние годы происходят значительные колебания погодных
	условий вследствие усиления засушливости и изменения климата в
	период вегетации посевов, что усложняет прогнозирование
	урожайности на больших площадях и требует применения
	современных методов оценки состояния и прогноза урожайности
	сельскохозяйственных культур. Одним из эффективных решений
	является использование данных спутникового мониторинга для
	оценки динамики роста и состояния посевов. Анализ состояния
	озимых культур и засорения полей с помощью дистанционного
	зондирования позволяет оперативно выявлять аномалии и
	корректировать агротехнические мероприятия для повышения
	урожайности посевов.
	Ранее проводившиеся исследования в области
	сельскохозяйственного мониторинга региона базировались на
	традиционных методах полевых наблюдений, которые не
	позволяют в полной мере учесть пространственную
	неоднородность посевов и оценить все засеянные поля.
	Применение современных методов анализа пространственных
	данных, индексов растительности и индекса распашки (NDVI,
	SAVI, PLI и т.д.) и учет погодных условий по территории позволяет
	существенно повысить точность прогноза урожайности.
	Спутниковый мониторинг не только снижает трудоемкость
	процесса, но и обеспечивает комплексное представление о
	состоянии полей в режиме реального времени
Цель	Цель проекта — разработка ГИС-модели для прогнозирования
Цель	урожайности озимых зерновых культур в Туркестанской области с
	учетом агрометеорологических условий и тенденций отклонения
	их от климатических данных, состояния посевов и уровня их
	засоренности, на основе спутникового мониторинга.
20 marry	
Задачи	1. Разработать и адаптировать модель ГИС для
	прогнозирования урожайности озимых зерновых культур,
	учитывающую спутниковые и наземные данные
	(метеорологические и климатические данные, а
	также биометрические параметры
	состояния, засоренности посевов по обследованиям).
	2. Подготовить базу многолетних данных основных
	метеорологических и климатических параметров,
	характеризующую гидротермические условия
	вегетационного периода зерновых культур в регионе,
	определить тенденции их изменения за последние годы.

3. Провести совместный анализ интеграцию зондирования земли, метеорологических дистанционного и климатических показателей и наземных наблюдений за посевами, что обеспечит качественное функционирование модели и точное прогнозирование. 4. Выполнить тестирование модели на полевых данных Туркестанской области для оценки ее эффективности и точности. 5. Провести дистанционную оценку площадей и сроков сева озимых зерновых культур на основе эффективных спутниковых индексов, подготовить спутниковые карты размещения площадей и сроков сева озимых зерновых культур. 6. Подготовить карты состояния посевов озимых зерновых культур в весенний и летний периоды вегетации и урожайности зерновых озимых культур основе спутниковых наземных данных, которые станут основой ДЛЯ оптимизации сельскохозяйственных процессов в южном регионе Казахстана. Ожидаемые и I. Будет разработана адаптированная модель ДЛЯ прогнозирования урожайности озимых зерновых культур на достигнутые результаты основе ланных дистанционного зондирования, климатических факторов, состояния посевов и уровня их засоренности. Модель будет учитывать особенности почв и погодных vсловий хынжо регионов Казахстана. обеспечивая более точные и обоснованные прогнозы урожайности; II. Проанализируются ключевые параметры, спутниковые данные, климатические показатели, состояние растений, а также засоренность полей. Эти параметры будут интегрированы в модель для повышения надежности прогнозирования урожайности и состояния культур; III. На основе собранных данных и анализа будет создан прогнозировать прототип модели, позволяющей урожайность и состояние озимых культур на разных стадиях их развития. Этот подход станет важным средством для аграрных предприятий, обеспечивая принятие более точных решений в управлении посевами; IV. Результаты исследований будут опубликованы в двух международных рецензируемых журналах с высоким процентилем по базе данных Scopus или в журналах, входящих в первые три квартиля по импактфактору Web of Science. Имена и фамилии 1. Арыстанов Асет Амирханович – руководитель проекта, старший научный сотрудник. H-индекс – 1; Scopus Author членов исследовательск ой ID: 59387339400; ORCID ID: 0009-0000-0341-5381. 2. Jay Sagin – Προφεccop. H-index – 16; Scopus Author ID: группы с их 57204467637; ORCID ID: 0000-0002-0386-888X. идентификатора ми

(Scopus Author ID,

Researcher ID, ORCID,	
при наличии) и	
ссылками на	
соответствующие	
профили	
Список публикаций со	Arystanov, A., Sagin, J., Karabkina, N., Arystanova, R., Yermekov, F.,
ссылками на них	Kabzhanova, G., Bekseitova, R., Aktymbayeva, A., & Kutymova, N.
	(2025). Automatic Classification of Agricultural Crops Using Sentinel-
	2 Data in the Rainfed Zone of Southern Kazakhstan. Agronomy, 15(9),
	Article 2040. https://doi.org/10.3390/agronomy15092040 .
Информация о	-
патентах	