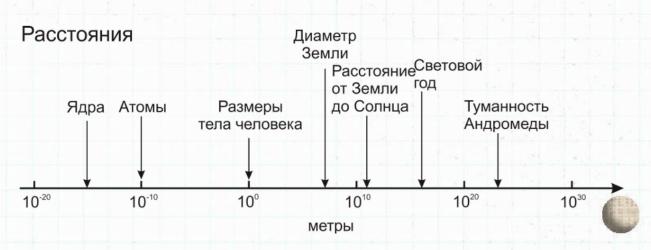


«Радиологические измерения»

Лекция 2. Основы ядерной физики.


и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А.

Масштабы и единицы измерения в ядерной физики

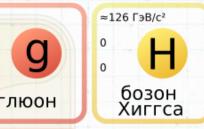
Радиус атома имеет величину порядка 10⁻⁸ см.

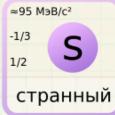
Радиус ядра имеет величину порядка 10⁻¹²÷10⁻¹³ см.

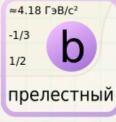
В качестве единицы энергии широко используется электронвольт (эВ).

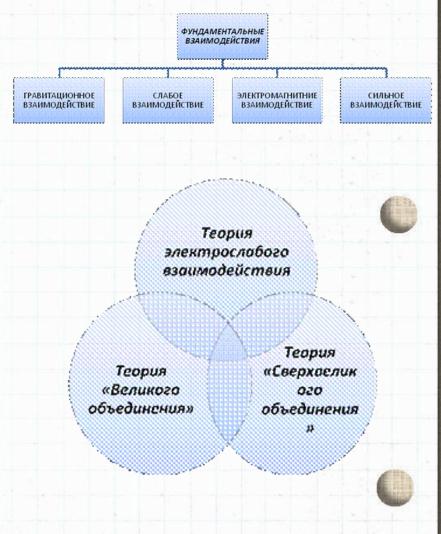
1 эВ представляет собой энергию, приобретаемую электроном, ускоренным разностью потенциалов в 1 вольт.

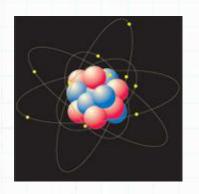
Энергия связи протонов и нейтронов в ядре равна в среднем 8·10⁶ эВ.

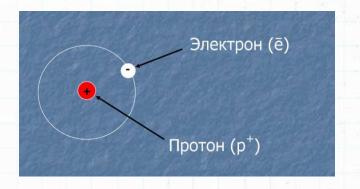











Фундаментальные взаимодействия

Вид	Взаимо- действующие частицы	Проявление	Механизм	Интенсив- ность	Радиус действия м	
СИЛЬНОЕ	тяжелые частицы (кварки, нуклоны)	ядерные силы, обеспечивающие существование ядер	обмен глюонами	1	10 ⁻¹⁵ ∞	
электро-магнитное	заряженные частицы, фотоны	кулоновская сила, обеспечивающая существование атома	обмен фотонами	1137		
СЛАБОЕ	кварки лептоны	β - распад	обмен бозонами	10 ⁻¹⁰	10 -18	
ГРАВИТА- ЦИОННОЕ	все тела Вселенной	всемирное тяготение, обеспечивающее существование звезд, планетных систем	обмен гравитонами ?	10 ⁻³⁸	œ	

АТОМ [греч. αтоµ - неделимый] - это структура материи, представляющая собой микрочастицу, состоящую из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов, связанных между собой электромагнитным взаимодействием.

НУКЛИД $_{N}^{A}Y_{z}$ – это атом химического элемента Y, состоящий из ядра с определенным числом протонов Z и определенным числом нейтронов N и числа электронов, равного числу протонов, которые связываются с ядром посредством электромагнитных сил.

Масса нуклида M_Y равна массе ядра M(Z,N) плюс массе Z электронов Zm_e минус массовый эквивалент энергии связи $B_e(Z)$ всех электронов в оболочках атома $M_Y = M(Z,N) + Zm_e - B_e(Z)$.

ЯДРО АТОМА _N^AX_Z – это структура материи, представляющая собой микрочастицу, состоящую из нуклонов с различными зарядовыми состояниями (N нейтронов и Z протонов), связанных ядерными силами, то есть сильными взаимодействиями.

Основными характеристиками стабильного ядра являются:

Массовое число -	A
Электрический заряд -	Z
Macca -	M
Энергия связи -	ΔE
Радиус -	R
Спин -	I
Магнитный момент -	μ
Квадрупольный электрический момент -	G
Изотопический спин -	T
Четность волновой функции -	P
Спектр возбужденных состояний -	E_{i}

Радиоактивные ядра дополнительно характеризуются:

Типом радиоактивного превращения; Периодом полураспада - $T_{1/2}$ Энергетическим спектром испускаемых частиц.

НУКЛОН [лат. nucleus - ядро] – общее наименование для нейтронов и протонов - частиц, из которых построены все ядра атомов. Предполагается, что нуклон имеет два зарядовых состояния, одно из которых с положительным единичным электрическим зарядом называется **протон,** а второе электрически нейтральное называется **нейтрон.**

Протон

Заряд, равен заряду электрона -
$$e = \begin{cases} 4.803 \cdot 10^{-10} \text{ СГСЭ} \\ 1.602 \cdot 10^{-19} \text{ Кл} \end{cases}$$

$$\mathsf{Macca} \cdot m_p = 1836, 1 \\ m_e = \begin{cases} 1,6726 \cdot 10^{^{-24}} \mathcal{Z} \\ 1,007276 \ a.e. \textit{м}. \\ 938,28 \ \mathsf{Mэв} \end{cases}$$

Спин -
$$s = \frac{1}{2}$$

Магнитный момент - $\mu_p = +2.79 \mu_{\scriptscriptstyle R}$

НУКЛОН [лат. nucleus - ядро] – общее наименование для нейтронов и протонов - частиц, из которых построены все ядра атомов. Предполагается, что нуклон имеет два зарядовых состояния, одно из которых с положительным единичным электрическим зарядом называется **протон,** а второе электрически нейтральное называется **нейтрон.**

Нейтрон (

n

Заряд, равен нулю

Масса -
$$m_n = 1838,6 m_e = 1,008665$$
 а.е.м.

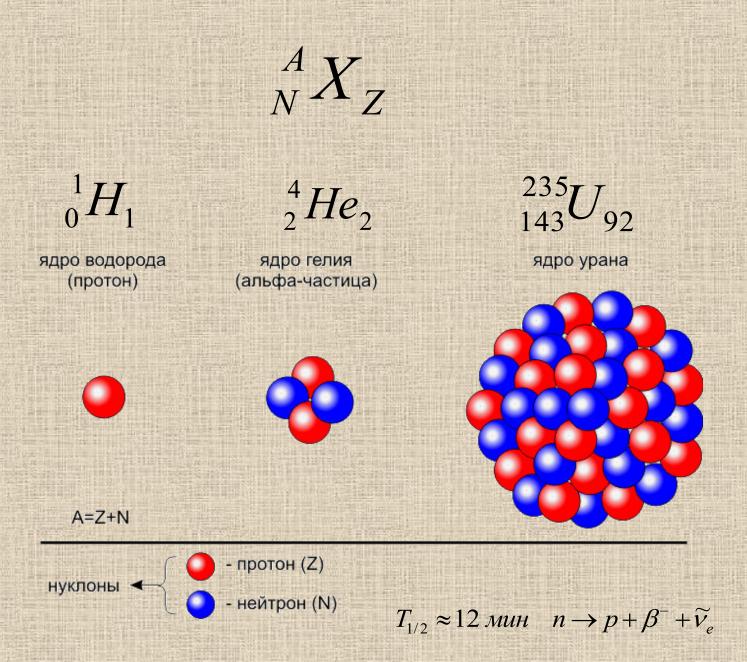
Спин -
$$s = \frac{1}{2}$$

Магнитный момент - $\mu_n = -1.91 \mu_{_{\mathcal{R}}}$ Заряд равен нулю!

В свободном состоянии нейтрон является нестабильным и испытывает самопроизвольное превращение в протон с испусканием электрона и антинейтрино.

ЗАРЯДОВОЕ ЧИСЛО ЯДРА Z (ПОРЯДКОВЫЙ НОМЕР ЯДРА) – это количество протонов в ядре, то есть атомный номер химического элемента в периодической таблице Менделеева. **МАССОВОЕ ЧИСЛО ЯДРА А** – это полное число нуклонов (Z протонов плюс N нейтронов) в ядре:

$$A = Z + N$$


Массовое число равно сумме

нейтроны 4 Нейтронов в ядре.

Электроны 2 Гелий

Протоны: Это число указывает на количество протонов в ядре. У нейтральных атомов оно равно числу электронов.

Структура атомного ядра

АТОМНАЯ ЕДИНИЦА МАССЫ аем – это 1/12 часть массы ядра углерода ¹²С.

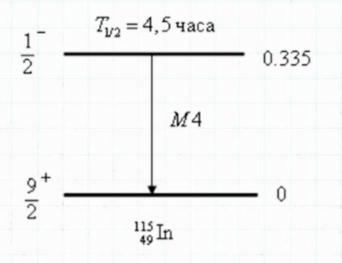
1 аем =
$$M_{12C}/12$$
 = (1,660531 \pm 0,000011) \bullet 10⁻²⁴ г

 $1 \text{ aem} = 931,48 \text{ M}_{9}\text{B}$

$$M_p = 1,00759 \text{ a.u.m.} = 938,2 \text{ MeV} = 1836 \cdot m_e$$

$$M_n = 1,00898$$
 a.u.m. = 939,5 MeV = 1838,5 · m_e

МАССА ЯДРА М(_N^A X_z) – это масса нуклида минус масса всех атомных электронов и плюс их суммарная энергия связи с ядром.


$$M(_{N}^{A}X_{Z}) = M(_{N}^{A}Y_{Z}) - Zm_{e} + B_{e}(Z).$$

ИЗОТОПЫ – ядра, имеющие одно и то же Z, при разных N и A. **ИЗОТОНЫ** – ядра, имеющие одно и то же N, при разных Z и A.

	Изотопы (Ca, Z=20)										
20	39Ca 859.6 \ LS e: 100.00%	40Ca >3.0E+21 Y 96.94% 2€	41Ca 1002E+5 Y 6: 100.00%	42Ca STABLE 0.647%	43Ca STABLE 0.135%	44Ca STABLE 2.09%	45Ca 162.61 D β-: 100.00%	46Ca >0.28E+16 Υ 0.004% 2β-	47Ca 4.536 D β-: 100.00%		
	38K 7.636 M €: 100.00%	39K 37ABLE 93.2381%	40K 1.248E+9 Y 0.0117% β-: 89.28% ε: 10.72%	41K TABLE 6.A502%	42K 12.321 H β-: 100.00%	43K 22.3 H β-: 100.00%	44K 22.13 M β-: 100.00%	45K 17.81 M β-: 100.00%	46K 105 S β-: 100.00%		
18	37Ar 34.95 D e: 100.00%	38Ar STABLE 0.0632%	39Ar 259 Y β-: 100.00%	40Ar STABLE 99.6003%	41Ar 1×9.61 M β-: 100.29%	42Ar 32.9 Υ β-: 100.00%	43Ar 5.37 M β-: 100.00%	44Ar 11.87 M β-: 100.00%	45Ar 21.48 S β-: 100.00%		
	36Cl 3.01E+5 Y β-: 98.10% ε: 1.90%	37Cl STABLE 24.23%	38Cl 37.24 M β-: 100.00%	39 Cl 50 2 M β-: 100.00%	40Cl 1.35 M β-: 100.00%	41Cl 28.4 S β-: 100.40%	42Cl 6.8 S β-: 100.00%	43Cl 3.13 S β-: 100.00%	44Cl 0.56 S β-: 100.00% β-n < 8.00%		
16	35S 87.51 D β-: 100.00%	368 STABLE 0.02%	37S 5.05 M β-: 100.00%	38\$ 170.3 M β-: 100.00%	39\$ 11.5 \$ β-: 100.00%	40\$ 8.8 \$ β-: 100.00%	41S 199 S β-100.00% β-n	42S 1.013 S β-: 100.00%	43S 0.28 S β-: 100.00% β-n: 40.00%		
	19		21		23	V	25		27		
Изотоны (N=20) Изобары (A=40)											

ИЗОБАРЫ – ядра, имеющие одно и то же A, при разных Z и N.

ИЗОМЕРЫ – возбужденные ядра с одинаковыми количествами протонов и нейтронов по сравнению с ядром в основном состоянии, но имеющие большое время жизни в возбужденном метастабильном энергетическом состоянии.

ИЗБЫТОК МАССЫ ЯДРА ∆ - это разность между массой ядра в атомных единицах массы М и его массовым числом А

Массы нуклидов измерены с большой точностью методами масс-спектрометрии и ядерных реакций.

Массы частиц в углеродной шкале масс (а.е.м.):

 Нейтрон
 1,008665

 Протон
 1,007276

 Электрон
 0,00054858

 Нуклид Н¹
 1,007825

 Нуклид С¹²
 12,000000

$$6m_n + 6M(H^1) = 6 \cdot 1,008665 + 6 \cdot 1,007825 = 12,098940$$

Разница суммы масс частиц находящихся в свободном и связанном состояниях называется **дефектом массы** - **Дт**.

ЭНЕРГИЯ СВЯЗИ ЯДРА – это энергия, необходимая для полного расщепления ядра на отдельные, составляющие его, протоны и нейтроны, то есть энергия, равная работе по удалению их на бесконечность друг от друга

$$\Delta m = \left[Z m_p + (A - Z) m_n - M_{\mathfrak{A}}(A, Z) \right]$$

$$\Delta m = \left[Z m (H^1) + (A - Z) m_n - M_{\mathfrak{A}m}(A, Z) \right]$$

Величина равная разности $M_{_{am}}(A,Z)-A$ называется **избытком массы** - $\Delta=M_{_{am}}(A,Z)-A$ Если использовать избыток массы, то можно записать

$$\Delta m = \left[Z \Delta H^1 + (A - Z) \Delta_n - \Delta_{am}(A, Z) \right]$$

Энергия эквивалентная *дефекту массы*, называется **энергией связи**.

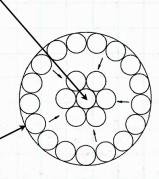
$$\Delta E = \left[Z \Delta H^1 + (A - Z) \Delta_n - \Delta_{am} (A, Z) \right] \cdot c^2.$$

Полуэмпирическая формула для энергии связи

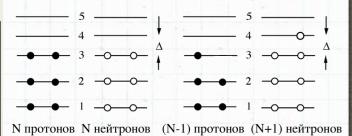
$$\varepsilon(A) = a_1 A - a_2 A^{2/3} - a_3 Z^2 A^{-1/3} - a_4 \frac{(A - 2Z)^2}{A} - a_5 \frac{\delta}{A^{3/4}}$$

 a_1 =15,75 МэВ – коэффициент объемной энергии связи;

 a_2 =17,8 МэВ – коэффициент поверхностной энергии связи;


а₃=0,711 МэВ – коэффициент кулоновской энергии связи;

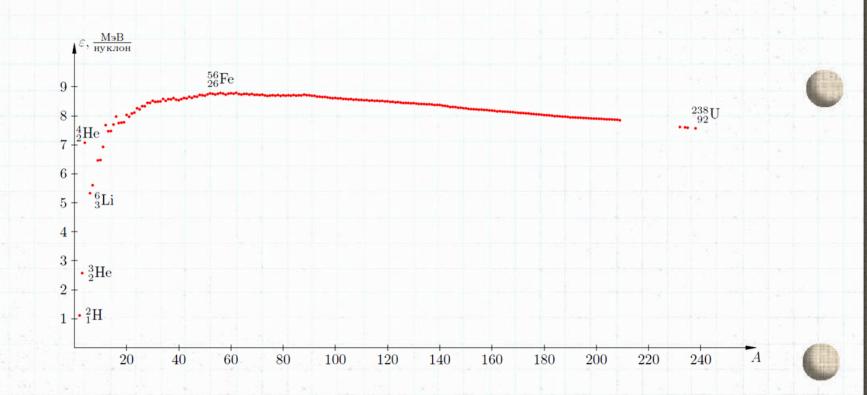
а_л=23,7 МэВ – коэффициент симметрической энергии связи;


 a_5 = +34 МэВ; 0; -34 МэВ – коэффициент спаривательной энергии связи

Для случая бесконечной ядерной материи энергия связи одного нуклона определяется его взаимодействием с ближайшими соседями. В этом случае энергия связи нуклонов пропорциональна их числу ~A

Нуклоны, расположенные на поверхности ядра, имеют меньшее число связей, чем внутренние, поэтому полная энергия связи уменьшается на величину, пропорциональную поверхности ядра ~А^{3/5}

Нуклоны в ядре подчиняются принципу Паули, так что изменение числа протонов или нейтронов при одинаковом значении массового числа А приводит к уменьшению энергии связи ~ (Z-A/2)²/A



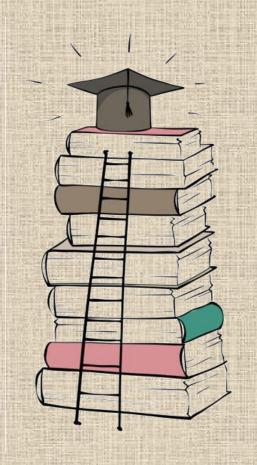
Кулоновская энергия сферы радиуса R с зарядом Z пропорциональна Z^2/R , поэтому энергия связи ядра уменьшается на величину $\sim Z^2/A^{\gamma_5}$

УДЕЛЬНАЯ ЭНЕРГИЯ СВЯЗИ ε – это величина, равная средней энергии связи данного ядра, приходящейся на один нуклон

$\varepsilon = \Delta W/A [MэB/нуклон]$

ЧЕТНО-ЧЕТНЫЕ ЯДРА – это ядра, состоящие из четного числа протонов Z=0,2,4,... и четного числа нейтронов N=0,2,4,...

НЕЧЕТНО-НЕЧЕТНЫЕ ЯДРА – это ядра, состоящие из нечетного числа протонов Z= 1, 3, 5, ... и нечетного числа нейтронов N= 1, 3, 5,


Для ядер c Z = Nудельная энергия выше, чем для других ядер c тем же значением A.

Четно-четные (по Z и N) ядра имеют в среднем большие значения, чем нечетно-четные, а нечетно-нечетные — меньшие.

НЕЧЕТНО-ЧЕТНЫЕ ЯДРА – это ядра, состоящие из нечетного числа протонов Z=1,3,5,... и четного числа нейтронов N=0,2,4,...

ЧЕТНО-НЕЧЕТНЫЕ ЯДРА – это ядра, состоящие из четного числа протонов Z=0,2,4,... и нечетного числа нейтронов N=1,3,5,...

СПАСИБО ЗА ВНИМАНИЕ!

