Brief information about the project

Title	IRN AP25796519 «Development of TiO ₂ -based semiconductor nanopowders for photocatalytic degradation of organic pollutants under visible light»
Relevance	The development of photocatalytic technologies is attracting increasing interest due to the growing need for new methods of environmental purification. TiO ₂ -based photocatalysts doped with iron, obtained by calcination of MIL-125, hold great promise for the efficient degradation of organic pollutants under visible or solar light, which reduces energy consumption and helps to better understand the nature of the doped material formation.
Objective	To develop semiconductor materials based on TiO ₂ nanopowders operating in the visible light region, obtained by calcining doped metal-organic frameworks MIL-125.
Tasks	 Task 1. Obtaining metal-organic frameworks MIL-125 by the solvothermal method. Task 2. Study of the thermal decomposition of MOF to obtain TiO₂ doped with Fe. Task 3. Effect of heat treatment on morphology and phase composition. Task 4. Determining the optimal concentration of doping or obtaining heterostructured photocatalysts based on Fe³⁺ and TiO₂ Task 5. Determination of electrical and electronic properties. Task 6. Evaluation of photocatalytic activity of materials Task 7. Determination of the presence of active particles during the decomposition of dyes Task 8. Study of photostability and photoaging of the material. Task 9. Adsorption properties and surface bonds

Expected and achieved results	The project is expected to develop
	and produce photocatalytic nanopowders
	based on iron-doped titanium dioxide
	(TiO ₂) obtained from a metal-organic
	framework MIL-125, which will
	demonstrate high photocatalytic activity
	under the influence of visible light.
	The final product will be
	characterized by XRD, SEM, FT-IR and
	BET spectroscopy.
	The optical and photoelectric
	properties of iron-doped TiO ₂ nanopowders
	will be determined.
	• The active species present in the
	decomposition reactions will be determined.
The names and surnames of the	Uralbekov Bolat Muratovich, PhD,
members of the research group	Professor at the Department of General and
with their identifiers (Scopus	Inorganic Chemistry, al-Farabi Kazakh
Author ID, Researcher ID,	National University. Profile Links: ORCID:
ORCID, if available) and links to	http://orcid.org/0000-0002-3245-4096,
the relevant profiles	Scopus: Scopus Author ID: 36664090200
List of publications with links to	Orazov, Z., Tulebekov, Y., Bakhadur,
them (by direction)	A., & Uralbekov, B. (2023). Kinetic model
	of photocatalytic oxidation of dye (Orange
	II) by superoxide radicals. Chemical
	Bulletin of Kazakh National University,
	110(4). (WoS: Q4, индекс цитирования: 1).
	DOI: https://doi.org/10.15328/cb1345
	• Tulebekov, Y., Orazov, Z.,
	Satybaldiyev, B., Snow, D. D., Schneider,
	R., & Uralbekov, B. (2023). Reaction Steps
	in Heterogeneous Photocatalytic Oxidation
	of Toluene in Gas Phase—A Review.
	Molecules, 28(18), 6451. (Процентиль: 68,
	индекс цитирования: 8). DOI:
	https://doi.org/10.3390/molecules28186451
Information about patents	