Brief information about the project

Name of the project	AP09057876 «Investigation of Kazakhstani low-rank
	coals for their biogenic coal-to-methane conversion
Delevence	Over the past decades and had mathema (CDM) has
Kelevance	emerged as a valuable energy resource and is expected to
	be a key component in the world energy portfolio in the
	future CBM is considered a non-conventional type of
	clean fuel because its combustion produces almost no or
	much less by-products/greenhouse gases than the
	combustion of fossil fuels. Because of these advantages
	and in response to the rapidly growing energy demand, it
	tends to put a great deal of effort into investigating the
	CBM potential of Kazakhstani low-rank coals with the
	ultimate goal of deeper understanding and employing this
	very promising gas resource.
Purpose	To implement a novel approach with lab-to-scale-up
	conversion potential of Kazakhstani low rank (lignite and
	sub-bituminous) coals
Objectives	Collection and characterization of coal samples from
	different Kazakhstan coal basins in terms of their disparate
	geography and depositional history. Knowledge of coal
	nature and structure is critical to formulating an effective
	exploration/exploitation strategy.
	• Collection and identification of the indigenous-
	exogenous microbial communities from geographically
	distinct regions and gaining insignt into their usability for
	based on 16S rRNA analysis.
	• Cultivation and adaptation of the isolated microbial
	communities using coals of different ranks as the sole
	carbon and energy source. Detailed characterization of
	how microbial community composition and abundance
	influence coal bioavailability will aid in the development
	of strategies for increasing the rate and extent of coal
	• Studying the combined effects of selected aerobic and
	anaerobic microbial communities on pretreatment and
	bioconversion (fermentation and methanogenesis) of coal.
	Understanding the limitations and conditions that support
	microbial growth are conducive to biogenic CBM
	production.
	• Measurement and assessment of coal bioavailability as
	well as methane yield under a set of controlled conditions.
	Determination of biogeochemical indicators of metabolic pathways and methana biosynthesis. Understanding of the
	relationship between community composition coal rank
	and methane production.
	Examination of a broad range of operational conditions
	and the important environmental factors (temperature, pH

	and salt concentration) in order to achieve the best system
	 performance. Investigation of possible reasons for the cessation of methane generation during coal bioconversion. Understanding of the inhibition mechanisms in bioconversion of coal to methane. Optimization of coal biogasification for reaching maximum productivity. Strategies may include microbial-chemical stimulations, coal pretreatment, and parameter manipulation of coal methanogenesis. Scaling-up biogenic methane-to-coal conversion and running experiments in a reactor under field-relevant conditions. Identifying the parameters and conditions to be considered when transferring strategies for enhancement of coal biogasification developed in small-scale laboratory studies to prospective large-scale applications. Determination of the fate of residual (biotreated) coal after regeneration of methane. The successful ventures of biogenic coal-to-methane conversion will also address the possibilities of using residual coal.
Expected and achieved results	The project will result in the investigation, evaluation and characterization of chemically and geographically disparate Kazakhstani low-rank coals for their ability to support microbial methane production in ex-situ conditions. The potential importance of biogenic CBM as a domestic energy source calls for understanding the biological and chemical background that lead to methanogenesis. Results of this research will advance our understanding of this background and provide insight for effective strategy development to improve the future methane producibility of low-rank coal reservoirs.
Research team members with their identifiers (Scopus Author	1. Akimbekov S. Nuraly - Ph.D., professor: <i>h</i> -index – 10. Scopus: 45160897400, Web of Science: A-5130–2014;
ID, Researcher ID, ORCID, if	ORCID: 0000-0002-5262-5155.
profiles	 Z. Tastambek T. Kuanysh, PhD: <i>n</i>-index – 6. Scopus: 57200176041, Web of Science: AAO-3781–2020; ORCID: 0000-0002-2338-8816. 3. Kowaymetoba Mapwah Xahuhohhaebha Mafuctip
	5. Кожахметова (маржан жалидолласына, магистр) технических наук, докторант: <i>h</i> -index – 1, Scopus: 57451762600, Web of Science: AAS-4987–2020; ORCID ID: 0000-0002-5879-3475
List of publications with links to them	1. М.Х. Кожахметова, А.А. Алибекова, Д.А. Нусипов, Б.К. Каменов,. Isolation and identification of coal acclimated microorganisms from the activated sludge. «Вестник КазНУ. Серия Экологическая» №4 (77), 2023 год (КОКСОН). <u>https://doi.org/10.26577/EJE.2023.v77.i4.09</u> 2. Биогенная конверсия казахстанских низкосортных углей в метан: монография / Н.Ш. Акимбеков. А.А.
	углей в метан. монография / п.ш. Акимоеков, А.А. Жұбанова, Қ.Т. Тастамбек, А.Б. Мылтықбаева, Д.К. Шерелхан, М.Х. Кожахметова, Н.П. Алтынбай. – Алматы: Everest, 2023.

	3. Nuraly S. Akimbekov, Ilya Digel, Kozhahmetova Marzhan, Kuanysh T. Tastambek, Dinara K. Sherelkhan, and Xiaohui Qiao Microbial Co-processing and
	Beneficiation of Low-rank Coals for Clean Fuel
	Production: A Review. Engineered Science, 2023, 25,
	942. <u>10.30919/es942</u> . Процентиль 98, Q1.
	4. Nuraly S. Akimbekov, Ilya Digel, Kuanysh T.
	Tastambek, Marzhan Kozhahmetova, Dinara K.
	Sherelkhan, Zhandos Tauanov, Hydrogenotrophic
	methanogenesis in coal-bearing environments: Methane
	production, carbon sequestration, and hydrogen
	availability, International Journal of Hydrogen Energy,
	2023 https://doi.org/10.1016/j.ijhydene.2023.09.223.
	Процентиль 95, Q1.
Patents	-

!!! Along with the completed form, please attach to email relevant photographs and video materials that can be used to visualize and present the project on the web page.

Figure 1. Proposed pathway for biogasifying coal to methane. The bacterial communities (*Firmicutes, Spirochetes, Bacteroidetes*, and all subgroups of *Proteobacteria*) sequentially break down the complex carbon in coal to intermediate and simple byproducts. Some of the byproducts of the bacterial biodegradation are the substrates required by methanogenic archaea (*Methanobacteriales, Methanomicrobiales, Methanosarcinales Methanococcales*, and *Methanopyrales*) to produce methane gas.

The three primary pathways for archaeal methane production are hydrogenotrophic (Eq. 1), acetoclastic (Eq. 2), and methylotrophic (Eq. 3) reactions:

$CH_3COOH \rightarrow CH_4 + CO_2$	(1))
Acetoclastic reaction: $\Delta G = -31 \text{ kJ/mol}$		

 $CO_{\scriptscriptstyle 2} + 4H_{\scriptscriptstyle 2} {\,\longrightarrow\,} CH_{\scriptscriptstyle 4} + 2H_{\scriptscriptstyle 2}O$ (2) Hydrogenotrophic reaction: $\Delta G = -136 \text{ kJ/mol}$

$$4CH_{3}OH \rightarrow 3CH_{4} + CO2 + 2H_{2}O$$
(3)
Methylotrophic reaction: $\Delta G = -105 \text{ kJ/mol}$

Different coal seams may have various methanogens present and different pathways resulting in methane formation. The requisite methanogenic pathways can also vary among coal basins, fields, and wells and can depend on the physicochemical properties of the microenvironment.

Figure 2. Methods for the analysis of coal, microbial communities and metabolites in coal-to-methane conversion. FTIR, Fourier-transform infrared spectroscopy; FISH, fluorescence in situ hybridization; SEM, scanning electron microscopy; GC-MS, gas chromatography-mass spectrometry; GC-FID, gas chromatography with flame-ionization detection; GC-TCD, gas chromatography with thermal conductivity detector; NMDS, nonmetric multidimensional scaling.