

Казахский Национальный Университет имени аль-Фараби Факультет географии и природопользования Кафедра ЮНЕСКО по устойчивому развитию

Дисциплина «Биоразнообразие растений»

ФАКТОРЫ СРЕДЫ И ИХ ДЕЙСТВИЕ НА ОРГАНИЗМЫ И ЭКОСИСТЕМЫ

Преподаватель: Садырова Гульбану Ауесхановна д.б.н., доцент

ПЛАН ЛЕКЦИИ

- 1. Условия жизни, ресурсы и адаптации организмов
- 2. Классификации экологических факторов
- 3. Общие закономерности совместного действия факторов на организмы

Следует отличать понятие «условия жизни» от понятия «ресурсы». Условия жизни обеспечивают — «обусловливают» — жизнедеятельность растений и животных, они могут изменяться, но сами при этом не расходуются, не исчерпываются. И ни один организм не способен сделать условия жизни недоступными для другого организма.

Некоторые факторы по отношению к организмам могут рассматриваться и как одно из условий, и как ресурс. Это влага, свет, соли в почвенном растворе. Почвообразующие породы, почвы — ресурс, а их свойства (кислотность, плотность, проницаемость и.т.д.) — это факторы, условия.

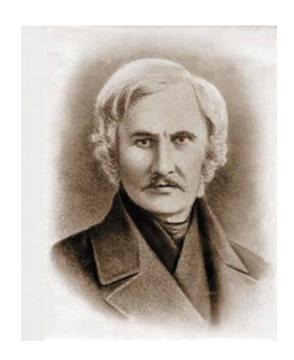
Организмы — это реальные носители жизни, самостоятельные «ячейки» обмена веществ. Они потребляют из окружающей среды необходимые вещества и выделяют в нее ненужные им — продукты обмена, которые, в свою очередь, могут быть использованы другими организмами.

К ресурсам относятся:

- в е щ е с т в а , которыми живые организмы питаются и из которых состоят их тела (пищевые ресурсы);
- энергия, вовлекаемая в обменные процессы (энергетические ресурсы);
- места, в которых протекают разные фазы их жизни.

Условия жизни, или факторы среды, постоянно меняются — в течение суток, года, жизни. Приспособления к изменениям факторов среды называются адаптациями.

2. КЛАССИФИКАЦИИ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ


В 1840 г. русский ученый Эдуард Александрович Эверсман в работе "Естественная история Оренбургской области" разделил экологические факторы на абиотические и биотические.

Абиотические факторы — это условия неорганической среды, влияющие на организмы.

Рельеф и климат обусловливают большое разнообразие абиотических факторов.

Биотические факторы — это влияния одних организмов на другие в процессе их жизнедеятельности (опыление растений, затенение верхними ярусами нижних, поедание одних особей другими).

К биотическим факторам относятся и антропические, или антропогенные, роль которых год от году возрастает.

Все факторы по действию можно разделить:

- прямодействующие и косвеннодействующие (опосредованные). Прямодействующие:
 свет, тепло, плодородие почв, влага (на растения);
- ▶ косвеннодействующие они же, но через изменения других, на животных, например, через цепи питания.

Пример. Тепло на почвах с многолетней мерзлотой может выступать косвеннодействующим фактором, причем действие его в разных климатических условиях проявляется на растениях по-разному. В муссонном климате летом наблюдается интенсивное таяние мерзлоты, корнеобитаемый слой перенасыщается талой водой, усиливается его холодность. Переувлажнение (анаэробиозис) и высокая холодность почв делают элементы питания физиологически недоступными для растений.

В континентальном климате мерзлота, наоборот, летом в жаркую сухую погоду служит единственным источником влаги для растений и способствует оптимизации водного режима почв.

Другие косвеннодействующие факторы:

- ветер усиливает суровость погоды;
- морские течения насыщают придонные слои кислородом;
- снежный покров защищает корни растений от вымерзания и выжимания;
- надземные части от высыхания.

Растения в лесу испытывают разное воздействие света.

Все факторы по действию можно разделить на прямодействующие и косвеннодействующие (опосредованные). Прямодействующие: свет, тепло, плодородие почв, влага (на растения), косвеннодействующие — они же, но через изменения других, на животных, например, через цепи питания.

Пример. Тепло на почвах с многолетней мерзлотой может выступать косвеннодействующим фактором, причем действие его в разных климатических условиях проявляется на растениях по-разному. В муссонном климате летом наблюдается интенсивное таяние мерзлоты, корнеобитаемый слой перенасыщается талой водой, усиливается его холодность. Переувлажнение (анаэробиозис) и высокая холодность почв делают элементы питания физиологически недоступными для растений. В континентальном климате мерзлота, наоборот, летом в жаркую сухую погоду служит единственным источником влаги для растений и способствует оптимизации водного режима почв. Другие косвеннодействующие факторы: ветер — усиливает суровость погоды, морские течения — насыщают придонные слои кислородом, снежный покров — защищает корни растений от вымерзания и выжимания, надземные части — от высыхания. Растения в лесу испытывают разное воздействие света.

КЛАССИФИКАЦИИ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ

АБИОТИЧЕСКИЕ	БИОТИЧЕСКИЕ	
Φ изические климатические — влага, свет,	Влияние растений друг на друга и на другие	
температура, ветер, давление, течения,	организмы в биоценозе (прямо или	
продолжительность суток	опосредованно)	
Физические эдафические – влагоемкость,	Влияние животных друг на друга и на другие	
теплообеспеченность механический состав и	организмы в биоценозе.	
проницаемость почвы	Антропические факторы – все виды	
Химические - состав воздуха, содержание в	деятельности человека.	
почве или воде элементов питания, соленость		
воздуха и воды, реакция рН		

ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ:

по времени	ПО ПЕРИОДИЧ	ПО	по среде	ПО
	НОСТИ	ПРОИСХОЖДЕНИЮ	возникновения	ОЧЕРЕДНОСТИ
эволюционный,	периодический,	космический,	атмосферный, водный,	первичный,
исторический	непериодический	абиотический,	геоморфологический,	вторичный
		биотический,	эдафический,	
		биологический,	физиологический,	
		техногенный, фактор	биоценотический,	
		беспокойства (для	популяционный и др.	
		птиц),		
		послепожарный и др.		

3. ОБЩИЕ ЗАКОНОМЕРНОСТИ СОВМЕСТНОГО ДЕЙСТВИЯ ФАКТОРОВ НА ОРГАНИЗМЫ

Каждый организм, каждая экосистема развивается при определенном сочетании факторов: влаги, света, тепла, наличия и состава питательных ресурсов.

Все факторы действуют на организм одновременно.

Для каждого организма, популяции, экосистемы существует диапазон условий среды – диапазон устойчивости, в рамках которого происходит жизнедеятельность объектов.

В процессе эволюции у организмов сформировались определенные требования к условиям среды.

Согласно закону американского биогеографа Виктора Эрнеста Шелфорда (1877–1968), дозы факторов, при которых организм, популяция или биоценоз достигают наилучшего развития и максимальной продуктивности, соответствуют оптимуму условий. С изменением этой дозы в сторону уменьшения или увеличения происходит угнетение организма, и чем сильнее отклонение значения факторов от оптимума, тем жизнеспособность его ниже, вплоть до гибели организма или разрушения биоценоза.

Условия, при которых жизнедеятельность максимально угнетена, но организм и биоценоз еще существуют, называются экстремальными и пессимальными. Последние — самые суровые.

3. ОБЩИЕ ЗАКОНОМЕРНОСТИ СОВМЕСТНОГО ДЕЙСТВИЯ ФАКТОРОВ НА ОРГАНИЗМЫ

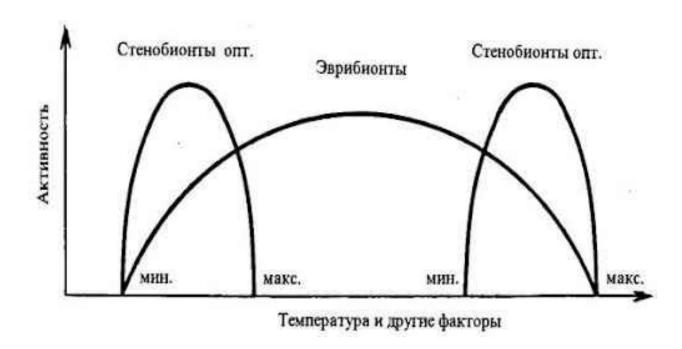
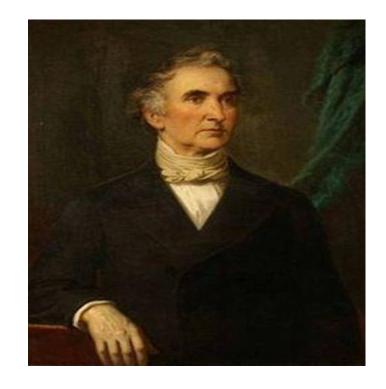


Рисунок - Экологическая пластичность видов (по Одуму, 1975) виды эврибионтный (1) и стенобионтный (2) по отношению к данному фактору; Б – виды, отличающиеся положением оптимума А Б 6

По отношению к одному фактору вид может быть стенобионтом, по отношению к другому – эврибионтом.

В зависимости от этого выделяют прямо противоположные пары видов: стенотермный – эвритермный (по отношению к теплу), стеногидрический – эвригидрический (к влаге), стеногаленный – эвригаленный (к засоленности), стено- – эврифотный (к свету), и др.

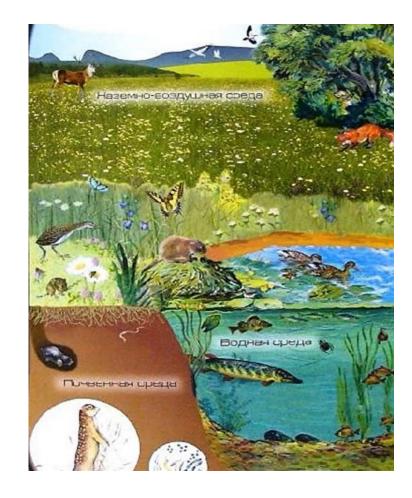

Типичные эврибионты простейшие организмы, грибы. Из высших растений к эврибионтам можно отнести виды умеренных широт: сосну обыкновенную, лиственницу даурскую, дуб монгольский, иву Шверина, бруснику и большинство видов вересковых.

Стенобионтность вырабатывается у видов, длительное время развивающихся в относительно стабильных условиях. Чем сильнее она выражена, тем меньшим ареалом обладает вид, или его сообщество. Наиболее распространенные виды, имеют широкий диапазон толерантности ко всем факторам. Они называются космополитами.

В середине 19 века (1846 г.) немецкий агрохимик Юстус фон Либих (1803-1873) в опыте с минеральными удобрениями установил, что наибольшее влияние на выносливость растений оказывают те факторы, которые в данном местообитании находятся в минимуме.


Ю. Либих писал в 1855 г.: «Элементы, полностью отсутствующие или не находящиеся в нужном количестве, препятствуют прочим питательным соединениям произвести эффект или уменьшают их питательное действие».

Это справедливо не только к элементам питания, но и к другим жизненно важным факторам. Фактор, уровень которого близок к пределам выносливости конкретного организма, вида и пр. компонентов биоты, называется ограничивающим, или лимитирующим. И именно к нему организм приспосабливается (вырабатывает адаптации) в первую очередь.


Для разных видов растений и животных пределы условий, в которых они себя хорошо чувствуют неодинаковы. Например, одни растения предпочитают очень высокую влажность, другие предпочитают засушливые местообитания. Одни виды птиц улетают в теплые края, другие — клесты, кедровки и птенцов выводят зимой.

Чем шире количественные пределы условий среды обитания, при которых тот или иной организм, вид и экосистема могут существовать, тем выше степень их выносливости, или толерантности.

Свойство видов адаптироваться к условиям среды называется **экологической пластичностью**, а по амплитуде переносимых популяциями естественных колебаний фактора судят об экологической валентности вида.

Виды с узкой экологической пластичностью, т.е. способные существовать в условиях небольшого отклонения от своего оптимума, узкоспециализированные, называются стенобионтными (stenos — узкий), виды широко приспособленные, способные существовать при значительных колебаниях факторов — эврибионтные (eurys — широкий) Границы, за которыми существование невозможно, называются нижним и верхним пределами выносливости, или экологической валентности.

Для разных видов растений и животных пределы условий, в которых они себя хорошо чувствуют неодинаковы. Например, одни растения предпочитают очень высокую влажность, другие предпочитают засушливые местообитания. Одни виды птиц улетают в теплые края, другие – клесты, кедровки и птенцов выводят зимой.

Чем шире количественные пределы условий среды обитания, при которых тот или иной организм, вид и экосистема могут существовать, тем выше степень их выносливости, или **толерантности**.

Свойство видов адаптироваться к условиям среды называется экологической пластичностью, а по амплитуде переносимых популяциями естественных колебаний фактора судят об экологической валентности вида.

Виды с узкой экологической пластичностью, т.е. способные существовать в условиях небольшого отклонения от своего оптимума, узкоспециализированные, называются стенобионтными (stenos – узкий), виды широко приспособленные, способные существовать при значительных колебаниях факторов – эврибионтные (eurys – широкий) Границы, за которыми существование невозможно, называются нижним и верхним пределами выносливости, или экологической валентности.

ЛИТЕРАТУРА:

- 1. Зобов В.В. Экология животных [Электронный ресурс]. Учебное пособие: полный курс лекций. Казань, 2012.
- 2. Дауда Т. А., Кощаев А. Г. Д 21 Экология животных: Учебное пособие. СПб., 2015.
- 3. Антропогенные факторы изменения животного мира // Экология учебные материалы. URL: https://www.ecology-education.ru/index.php?Action=full&id=463. 2019.
- 4. Бейсенова А.С., Шилдебаев Ж.Б., Сауибаева Г.З. Экология. Алматы, 2001.
- 5. Сравнительная физиология животных: учебник для студентов высших учебных заведений. Санкт-петербург, 2010.