Lecture 1
Definition of the type of
the partial differential
equations and systems.



Partial differential equations (PDEs) in general, or the governing equations in fluid
dynamics in particular, are classified into three categories: (1) elliptic, (2) parabolic,
and (3) hyperbolic. The physical situations these types of equations represent can be
illustrated by the flow velocity relative to the speed of sound as shown in Figure -

Consider that the flow velocity u is the velocity of a body moving in the quiescent fluid.
The movement of this body disturbs the fluid particles ahead of the body, setting off the
propagation velocity equal to the speed of sound a. The ratio of these two competing
speeds 1s defined as Mach number

u

M =
a

For subsonic speed, M < 1, as time 7 increases, the body moves a distance, ut, which
is always shorter than the distance at of the sound wave The sound wave

reaches the observer, prior to the arrival of the body, thus warning the observer that
an object is approaching. The zones outside and inside of the circles are known as the

zone of silence and zone of action, respectively.
If, on the other hand, the body travels at the speed of sound, M = 1,then the observer

does not hear the body approaching him prior to the arrival of the body, as these two
actions are simultaneous All circles representing the distance traveled
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by the sound wave are tangent to the vertical line at the positidn of the observer. For
supersonic speed, M > 1, the velocity of the body is faster than the speed of sound
The line tangent to the circles of the speed of sound, known as a Mach

wave, forms the boundary between the zones of silence (outside) and action (inside).
Only after the body has passed by does the observer become aware of it.
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The governing equations for subsonic flow, transonic flow, and supersonic flow
are classified as elliptic, parabolic, and hyperbolic, respectively. We shall elaborate on
these equations below. Most of the governing equations in fluid dynamics are second
order partial differential equations. For generality, let us consider the partial differential
equation of the form [Sneddon, 1957] in a two-dimensional domain
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where the coefficients A, B, C. D, E, and F are constants or may be functions of both
independent and/or dependent variables. To assure the continuity of the first derivative
ofu.u, = du/dx and u, = ou/3y, we write
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Here u forms a solution surface above or below the x — y plane and the slope dy/dx
representing the solution surface is defined as the characteristic curve.

Eauations can be combined to form a matrix equation
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Since it is possible to have discontinuities in the second order derivatives of the
dependent variable along the characteristics, these derivatives are indeterminate. This

happens when the determinant of the coefficient matrix in is equal to zero.
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Solving this quadratic equation yields the equation of the characteristics in physical
S dy BB —4AC

dx 2A

The second order PDE is classified according to the sign of the expression
(B> — 4 AC).

(a) Elliptic if B> —4AC <0

In this case, the characteristics do not exist.
(b) Parabolicif B> —4AC =0

In this case, one set of characteristics exists.
(c) Hyperbolic if B> — 4AC > 0

In this case, two sets of characteristics exist.
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in which one can identify the following geometrical propertics:

B’ —4AC <0 ellipse
B*—4AC =0 parabola
B> —4AC > 0 hyperbola

Examples
(a) Elliptic equation
u  d%u
ax2 Ty =Y
A=1, B=0, C=1

B> —4AC = -4 <0

(b) Parabolic equation



(c) Hyperbolic equation

1-D First Order Wave Equation
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1-D Second Order Wave Equation
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where
A=1, B=0, C=-da°
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2-D small disturbance potential equation
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subject to the Dirichlet boundary conditions:
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For time dependent problems, we must provide initial conditions as well as boundary
conditions. Let us consider the case of hyperbolic, parabolic, and elliptic equations as

(1) Hyperbolic equations
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Second Order Equation
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Two initial conditions given {u(x, 0) and g(x, 0)
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Two boundary conditions given {u(O, t) or EE(O’ 1)
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One initial condition given

{u(x, 0) or —(x,0)

One boundary condition given at x =0 {u(O, ty or —(0,1)

(2) Parabolicequations:
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(3) Elliptic equations
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Two boundary conditions given
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where I' 5 and T"y denote the Dirichlet and Neumann boundaries
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The basicidea of finite diffcrence methods is simple: derivatives in differential equations
are written 1n terms of discrete quantities of dependent and independent variables,
resulting in simultaneous algebraic equations with all unknowns prescribed at discrete
mesh points for the entire domain.

In fluid dynamics applications, appropriate types of differencing schemes and suit-
able methods of solution are chosen, depending on the particular physics of the flows,
which may include inviscid, viscous, incompressible, compressible, irrotational, rota-
tional, laminar, turbulent, subsonic, transonic, supersonic, or hypersonic flows. Dif-
ferent forms of the finite difference equations are written to conform to these different
physical phenomena encountered in fluid dynamics.

SIMPLE METHODS

Consider a function u#(x) and its derivative at point x,

d Ax) —
u(x) — tm u(x + Ax) — u(x) (.11)
0x Ax—0 Ax
If u(x + Ax) is expanded in Taylor series about u(x), we obtain
3 Ax)* 9° Ax)? o’
u(x + Ax) = u(x) + Ax ux) + (Ax)” "ulx) + (A%)" 0°u(x) + - (3.1.2)
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Substituting (3.1.2) into (3.1.1) yields
du(x) , Bu(x) Ax 3%u(x)
. ( _%.“) (3.1.3)

ax Ax—0\  Ox 2 9x?

Or it is seen from (3.1.2) that

u(x + Ax) —u(x)  du(x) Ax du(x) du(x
Ax T ax + Zx szx s d(x) O(4x) G-14)

The derivative 24 ,} L in (3.1.4) is of first order in Ax, indicating that the truncation
error O(Ax) goes to zero like the first power in Ax. The finite difference form given by

(3.1.1). (3.1.3). and (3.1.4) is said to be of the first order accuracy.
we may write u in Taylor series ati +1andi — 1,
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Rearranging (3.1.5), we arrive at the forward difference:

du Wil — Ui

— ) = — 4+ 0O(A 3.1.7
(ax)l_ L1 4 ogax) (3.1.7)

Likewise, from (3.1.6), we have the backward difference:

du u; — U1

— ) = A 3.1.8
(5) = 5=t + o (3.1.8)
A central difference is obtained by subtracting (3.1.6) from (3.1.5):
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It is seen that the truncation errors for the forward and backward differences are first
order. whereas the central difference yields a second order truncation error.



Finally, by adding (3.1.5) and (3.1.6), we have
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This leads to the finite difference formula for the second derivative with second order
accuracy,
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