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In general, finite difference equations may be generated for any order derivative with
any number of points involved (any order accuracy). For example, let us consider a first
derivative associated with three points such that

(B_u _au; +bu_y +cuj (3.2.1)
ax/), Ax -

The coetficients a, b, ¢ may be determined from a Taylor series expansion of upstream
nodes u; 1 and u;_; about ; (one-sided upstream or backward difference)
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from which we obtain
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It follows from (3.2.1) and (3.2.3) that the following three conditions must be satisfied:

a+b+c=0 (3.2.4a)
b+2c=-1 (3.2.4b)
b+4c=0 (3.2.4¢)

The solution of (3.2.4) yieldsa = 3/2, b = —2,and ¢ = 1/2. Thus, from (3.2.1) we obtain
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If the downstream nodes u; 1 and u; ., are used (one-sided downstream or forward
difference), then we have
(au) =3+ AU — uio
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A similar approach may be used to determine the finite difference formula for a
second derivative. In view of (3.2.3) and setting

a+b+c=0 (3.2.7a)

b+2c=0 (3.2.7b)

b+4c =72 (3.2.7¢)
we obtain

ﬁ + Ax— +--- (3.2.8)

0%u W= 2u i 33u
. Ax? dx3



Forward Difference Formulas

First Order Accuracy
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Second Order Accuracy

ou _ —3u; +4u; ) — Ui 4 Ax? 33u
ox /), 2Ax 3 0x?

Backward Difference Formulas

First Order Accuracy
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Central Difference Formuias

Second Order Accuracy
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NONUNIFORM MESH

The standard Taylor series expansion may be applied to nonuniform meshes. The first
derivative one-sided first order formula takes the form

uN Ui —u Axig 3u (3.6.1)
0x i_ AX{_H 2 3.762 o

The backward formula becomes
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where Ax; = x; — x;_1, etc.
The central difference is obtained by combining (3.6.1a) and (3.6.1b), which will
lead to the second order formula

du 1 Ax; ( " AXip1 ( )-’ AxiAx; 4 Ou
— | = Wiyl — U i —ui-1)| —
ax ; Ax; + Axii Axi_,_} i+ AX; I - 0 ax3




It can also be shown that Taylor expansion leads to a forward or backward scheme. For
example, for a forward scheme, we obtain
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The three-point central difference formula for the second derivative 1s of the form

9’u Wi — U U — Ui 2 n 1(A A )83u
- — — — X; — X;)—=
dx? ; AXiiq Ax; Ax; 1+ Ax; 3 i ax3

(3.6.3)

Axi3+l + Axf’ ot
12(Ax,g+1 + Ax,-) x4

(3.6.4)



ACCURACY OF FINITE DIFFERENCE SOLUTIONS

The finite difference formulas and their subsequent use in boundary value problems
must assure accuracy in portraying the physical aspect of the problem that has been
modeled. The accuracy depends on consistency, stability, and convergence as defined
below:

(a) Consistency A finite difference equation is consistent if it becomes the corre-
sponding partial differential equation as the grid size and time step approach
zero, or truncation errors are zero. This is usually the case if finite difference
formulas are derived from the Taylor series.

(b) Stability A numerical scheme used for the solution of finite difference equa-
tions is stable if the error remains bounded. Certain criteria must be satisfied in

(c) Convergence A finitedifference schemeisconvergentifitssolutionapproaches
that of the partial differential equation as the grid size approaches zero. Both
consistency and stability are prerequisite to convergence.



