

1. Системы с интеллектуальным интерфейсом (коммуникативные способности)

Интеллектуальные базы данных

обеспечивают выборку необходимой информации, не присутствующей в явном виде, а выводимой из совокупности хранимых данных

Естественно-языковой интерфейс

Применяется для доступа к интеллектуальным базам данных, контекстного поиска документальной текстовой информации, голосового ввода команд в системах управления, машинного перевода с иностранных языков.

Для реализации ЕЯ-интерфейса необходимо решить проблемы:

морфологического, синтаксического и семантического анализа, задачу синтеза высказываний на естественном языке

Гипертекстовые системы

Используются для реализации поиска по ключевым словам в базах данных с текстовой информацией.

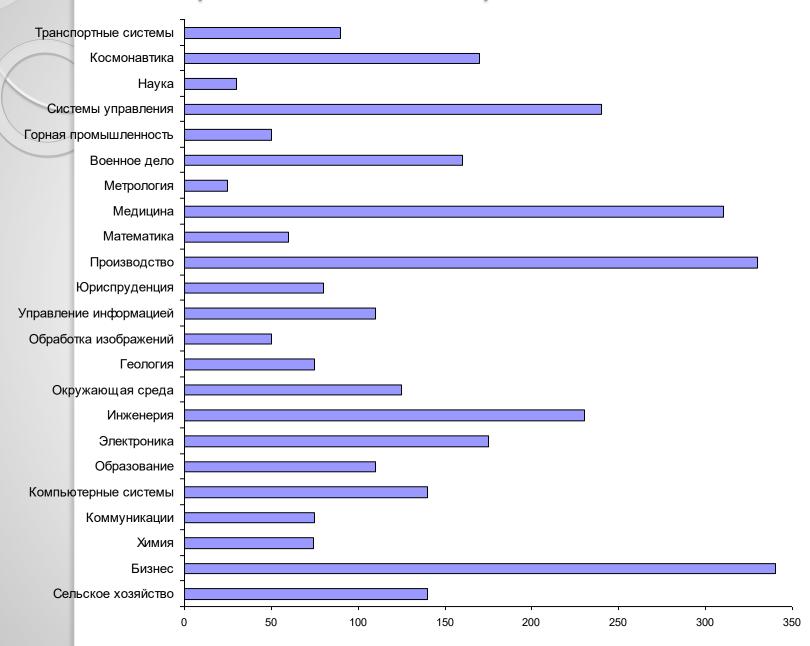
Механизм поиска сначала работает с базой знаний ключевых слов, а затем — с самим текстом

Системы контекстной помощи

Частный случай гипертекстовых и ЕЯсистем

Пользователь описывает проблему, а система на основе дополнительного диалога конкретизирует ее и выполняет поиск относящихся к ситуации рекомендаций.

Системы когнитивной графики

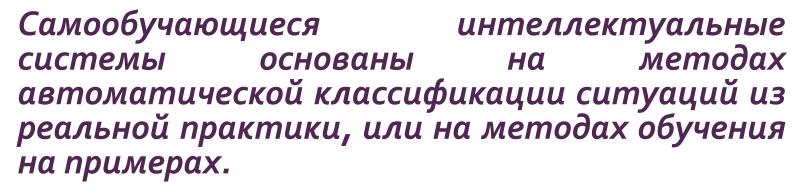

общение Ориентированы на ИИС посредством пользователем графических образов, которые генерируются соответствии изменениями параметров наблюдаемых моделируемых или процессов

2. Экспертные системы (решение сложных плохо формализуемых задач)

Характеристики задач

- задачи не могут быть представлены в числовой форме;
- исходные данные и знания о предметной области обладают неоднозначностью, неточностью, противоречивостью;
- цели нельзя выразить с помощью четко определенной целевой функции;
- не существует однозначного алгоритмического решения задачи;
- алгоритмическое решение существует, но его нельзя использовать по причине большой размерности пространства решений и ограничений на ресурсы (времени, памяти).

Области применения экспертных систем


Признаки классифицирующие ЭС

- способ формирования решения анализирующие и синтезирующие ЭС
- способ учета временного признака статические и динамические ЭС
- вид используемых данных и знаний ЭС с детерминированными и неопределенными знаниями
- ЧИСЛО ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ ЗНАНИЙ
 ЭС с использованием одного или нескольких источников знаний

4 основных класса ЭС

	Анализ	Синтез	
Детерминиро ванность знаний	Классифицирующие	Трансформи рующие	Один источник знаний
Неопределен- ность знаний	Доопределяющие	Мультиагентные	Несколько источников знаний
	Статика	Динамика	

3. Самообучающиеся системы (способность к самообучению)

- Стратегия «обучения с учителем»
- Обучение «без учителя»

Недостатки:

- относительно низкая адекватность баз знаний возникающим реальным проблемам из-за неполноты и/или зашумленности обучающей выборки;
- низкая степень объяснимости полученных результатов;
- поверхностное описание проблемной области и узкая направленность применения из-за ограничений в размерности признакового пространства.

Индуктивные системы

Позволяют обобщать примеры на основе принципа индукции «от частного к общему». Процедура обобщения сводится к классификации примеров по значимым признакам.

Нейронные сети

Нейронные сети — обобщенное название группы математических алгоритмов, обладающих способностью обучаться на примерах, «узнавая» впоследствии черты встреченных образцов и ситуаций.

Нейронная сеть — это кибернетическая модель нервной системы, которая представляет собой совокупность большого числа сравнительно простых элементов нейронов, топология соединения которых зависит от типа сети

Системы, основанные на прецедентах

Поиск решения осуществляется на основе аналогий и включает следующие этапы:

- получение информации о текущей проблеме;
- сопоставление полученной информации со значениями признаков прецедентов из базы знаний;
- выбор прецедента из базы знаний, наиболее близкого к рассматриваемой проблеме;
- адаптация выбранного прецедента к текущей проблеме;
- проверка корректности каждого полученного решения;
- занесение детальной информации о полученном решении в БЗ

Информационные хранилища

Хранилище данных - это предметноориентированное, интегрированное, привязанное ко времени, неизменяемое собрание данных, применяемых для поддержки процессов принятия управленческих решений.

Специальные методы для извлечения значимой информации

- Технология OLAP (On-line Analytical Processing — оперативный анализ данных)
- Data Mining или Knowledge Discovery

4. Адаптивные информационные системы (адаптивность)

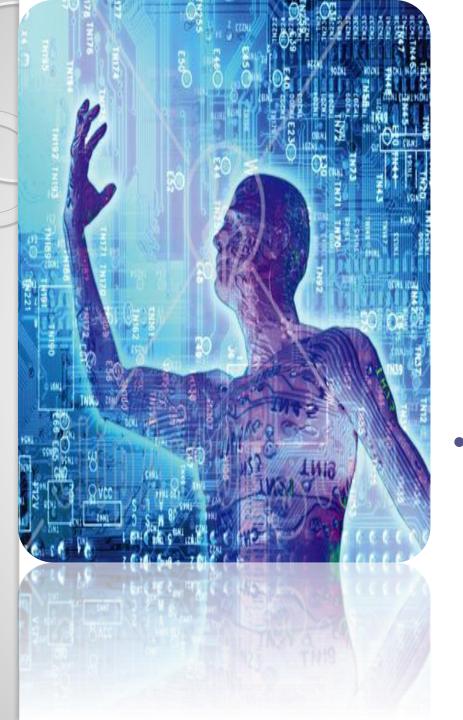
Требования:

- адекватно отражать знания проблемной области в каждый момент времени;
- быть пригодными для легкой и быстрой реконструкции при изменении проблемной среды.

Ядром таких систем является постоянно развиваемая модель проблемной области, поддерживаемая в специальной базе знаний — репозитории.

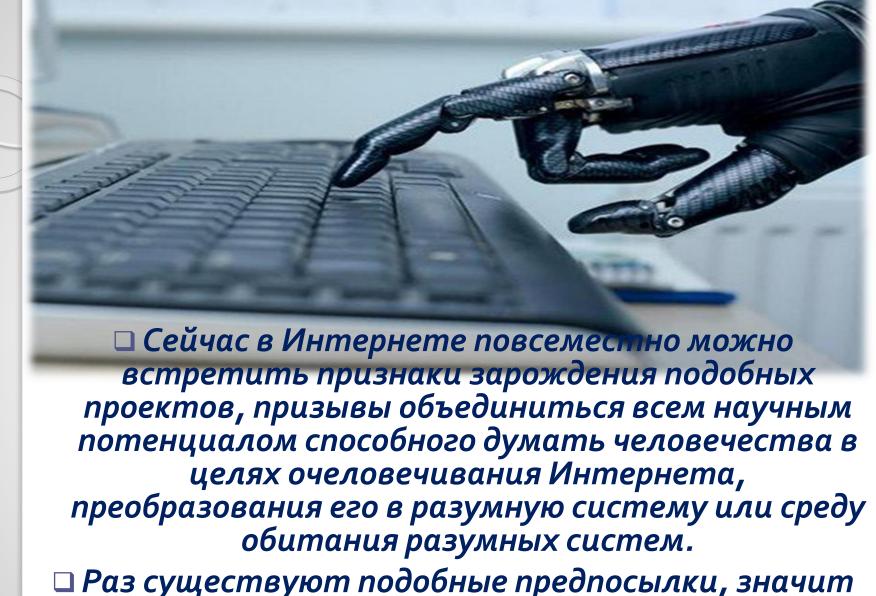
Типы проектирования

• Оригинальное


Реализация этого подхода основана на использовании систем автоматизированного проектирования, или CASE-технологий (Designer2000, SilverRun и др.).

• Типовое

Для реализации этого подхода применяются инструментальные средства компонентного (сборочного) проектирования информационных систем


Отличия систем искусственного интеллекта от обычных программных систем

Характеристика	Программирование в системах искусственного интеллекта	Традиционное программирование
Тип обработки	Символьный	Числовой
Метод	Эвристический поиск	Точный алгоритм
Задание шагов решения	Неявное	Явное
Искомое решение	Удовлетворительное	Оптимальное
Управление и данные	Смешаны	Разделены
Знания	Неточные	Точные
Модификации	Частые	Редкие

• В последнее время наблюдается возрастание интереса к искусственному интеллекту, вызванное повышением требований к информационным системам. Умнеет программное обеспечение, умнеет бытовая техника.

Мы неуклонно движемся к новой информационной революции, сравнимой по масштабам с развитием Интернета, имя которой – искусственный интеллект

□ Раз существуют подобные предпосылки, значит не что не оставит полет человеческой мысли на пути достижения поставленной цели.

Заключение

Итак, искусственный интеллект-это устройство, которое может выполнять такую же умственную деятельность, которую может выполнять человек.

Искусственный интеллект призван расширить возможности компьютерных наук, а не определить их границы. Одной из важных задач, стоящих перед исследователями, является поддержание этих усилий.

Спасибо за внимание!