

Казахский Национальный Университет имени аль-Фараби Факультет географии и природопользования Кафедра ЮНЕСКО по устойчивому развитию

Дисциплина «Биоразнообразие животных»

ВОДНАЯ СРЕДА ОБИТАНИЯ. СПЕЦИФИКА АДАПТАЦИИ ГИДРОБИОНТОВ

Преподаватель: Садырова Гульбану Ауесхановна д.б.н., доцент

ПЛАН ЛЕКЦИИ

- 1. Введение к водной среде обитания. Экологические зоны Мирового океана.
- 2. Основные свойства водной среды.
- 3. Некоторые специфические приспособления гидробионтов.

ВВЕДЕНИЕ К ВОДНОЙ СРЕДЕ ОБИТАНИЯ

Вода как среда обитания имеет ряд специфических свойств, таких, как большая плотность, сильные перепады давления, относительно малое содержание кислорода, сильное поглощение солнечных лучей и др. **Водоемы и отдельные их участки** различаются, кроме того, солевым режимом, скоростью горизонтальных перемещений (течений), содержанием взвешенных частиц.

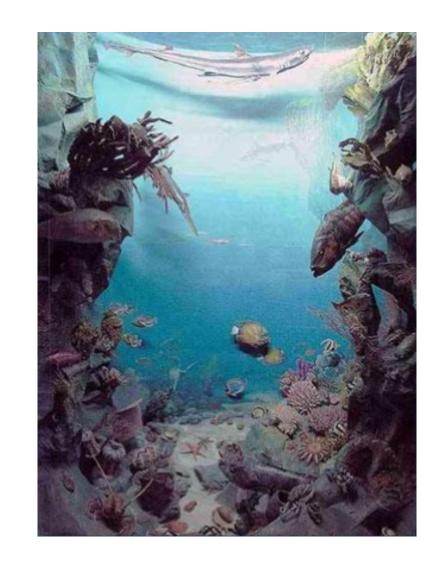
В океане и входящих в него морях различают, прежде всего, две экологические области: толщу воды - **пелагиаль** и дно - **бенталь**. В зависимости от глубины **бенталь** делится на сублиторальную зону - область плавного понижения суши до глубины примерно 200 м, батиальную - область крутого склона и абиссальную зону - область океанического ложа со средней глубиной 3-6 км.

Еще более глубокие области бентали, соответствующие впадинам океанического ложа, называют ультраабиссалью. Кромка берега, заливаемая во время приливов, называется литоралью. Выше уровня приливов часть берега, увлажняемая брызгами прибоя, получила название супралиторали.

Организмы, обитающие в толще воды, или пелагиали, относятся к пелагосу.

Пелагиаль также делят на вертикальные зоны, соответствующие по глубине зонам бентали:

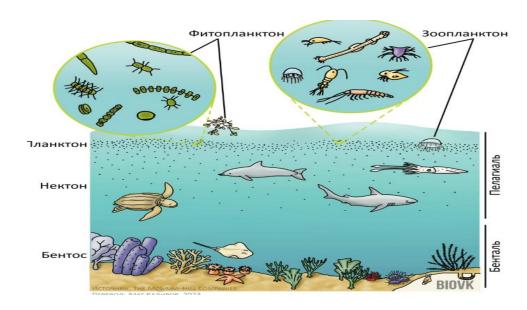
- **>** эпипелагиаль
- батипелагиаль
- абиссопелагиаль.


Нижняя граница эпипелагиали (не более 200 м) определяется проникновением солнечного света в количестве, достаточном для фотосинтеза. Фотосинтезирующие растения глубже этих зон существовать не могут.

В сумеречных батиальных и полных мрака абиссальных глубинах обитают лишь микроорганизмы и животные. Разные экологические зоны выделяются и во всех других типах водоемов: озерах, болотах, прудах, реках и т. д. Разнообразие гидробионтов, освоивших все эти места обитания, очень велико.

Для жизни придонных организмов имеют значение свойства грунта, режим разложения органических остатков и т. п. Поэтому наряду с адаптациями к общим свойствам водной среды ее обитатели должны быть приспособлены и к разнообразным частным условиям.

Обитатели водной среды получили в экологии общее название гидробионтов. Они населяют Мировой океан, континентальные водоемы и подземные воды.



2. ОСНОВНЫЕ СВОЙСТВА ВОДНОЙ СРЕДЫ

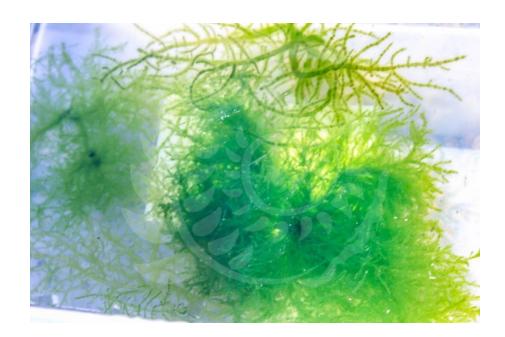
Плотность воды - это фактор, определяющий условия передвижения водных организмов и давление на разных глубинах. Для дистиллированной воды плотность равна 1 г/см 3 при 4 °С. Плотность природных вод, содержащих растворенные соли, может быть больше, до 1,35 г/см 3. Давление возрастает с глубиной примерно в среднем на 1 · 105 Па (1 атм) на каждые 10м.

В составе планктона - одноклеточные и колониальные водоросли, простейшие, медузы, сифонофоры, гребневики, крылоногие и киленогие моллюски, разнообразные мелкие рачки, личинки донных животных, икра и мальки рыб и многие другие. Планктонные организмы обладают многими сходными адаптациями, повышающими их плавучесть и препятствующими оседанию на дно.

Однако многие обитатели морей и океанов относительно стенобатны и приурочены к определенным глубинам. **Стенобатность** чаще всего свойственна мелководным и глубоководным видам. Только на литорали обитают кольчатый червь пескожил Arenicola, моллюски морские блюдечки (Patella). Многие рыбы, например из группы удильщиков, головоногие моллюски, ракообразные, погонофоры, морские звезды и др. встречаются лишь на больших глубинах при давлении не менее $4 \cdot 107$ - $5 \cdot 107$ Па (400-500 атм).

3. НЕКОТОРЫЕ СПЕЦИФИЧЕСКИЕ ПРИСПОСОБЛЕНИЯ ГИДРОБИОНТОВ

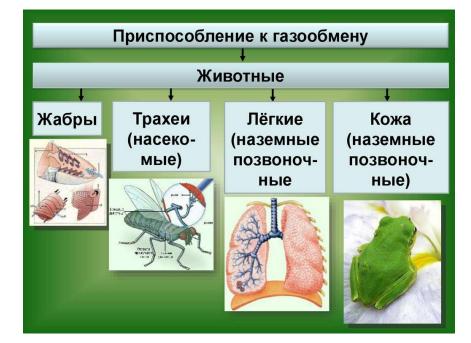
Жизнь в постоянных сумерках или во мраке сильно ограничивает возможности зрительной ориентации гидробионтов. В связи с быстрым затуханием световых лучей в воде даже обладатели хорошо развитых органов зрения ориентируются при их помощи лишь на близком расстоянии.


Звук распространяется в воде быстрее, чем в воздухе. Ориентация на звук развита у гидробионтов в целом лучше, чем зрительная. Ряд видов улавливает даже колебания очень низкой частоты (инфразвуки), возникающие при изменении ритма волн, и заблаговременно спускается перед штормом из поверхностных слоев в более глубокие (например, медузы).


К приспособлениям планктонных организмов относятся:

- 1) общее увеличение относительной поверхности тела за счет уменьшения размеров, сплющенности, удлинения, развития многочисленных выростов или щетинок, что увеличивает трение о воду;
- 2) уменьшение плотности за счет редукции скелета, накопления в теле жиров, пузырьков газа и т. п. У диатомовых водорослей запасные вещества отлагаются не в виде тяжелого крахмала, а в виде жировых капель. Ночесветка Noctiluca отличается таким обилием газовых вакуолей и капелек жира в клетке, что цитоплазма в ней имеет вид тяжей, сливающихся только вокруг ядра. Воздухоносные камеры есть и у сифонофор, ряда медуз, планктонных брюхоногих моллюсков и др.

Водоросли (фитопланктон) парят в воде пассивно, большинство же планктонных животных способно к активному плаванию, но в ограниченных пределах. Планктонные организмы не могут преодолевать течения и переносятся ими на большие расстояния. Многие виды зоопланктона способны, однако, к вертикальным миграциям в толще воды на десятки и сотни метров, как за счет активного передвижения, так и за счет регулирования плавучести своего тела. Особую разновидность планктона составляет экологическая группа нейстона ("нейн" - плавать) - обитатели поверхностной пленки воды на границе с воздушной средой.


Кислородный режим. В насыщенной кислородом воде содержание его не превышает 10 мл в 1 л, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания гидробионтов значительно усложнены. Кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние слои водной толщи, как правило, богаче этим газом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается. В слоях, сильно заселенных животными и бактериями, может создаваться резкий дефицит О 2 из-за усиленного его потребления.

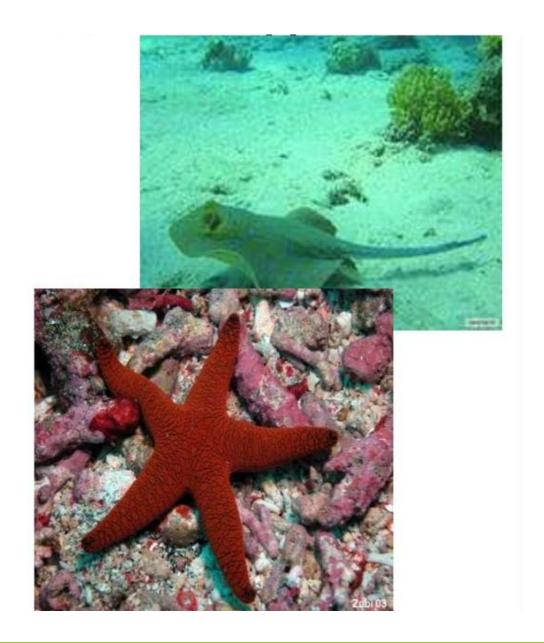
Дыхание гидробионтов осуществляется либо через поверхность тела, либо через специализированные органы - жабры, легкие, трахеи. При этом покровы могут служить дополнительным органом дыхания. Например, рыба вьюн через кожу потребляет в среднем до 63 % кислорода. Если через покровы тела происходит газообмен, то они очень тонки.

Дыхание облегчается также увеличением поверхности. Это достигается в ходе эволюции видов образованием различных выростов, уплощением, удлинением, общим уменьшением

размеров тела.

Некоторые виды при недостатке кислорода активно изменяют величину дыхательной поверхности. Черви Tubifex tubifex сильно вытягивают тело в длину; гидры и актинии - щупальца; иглокожие - амбулакральные ножки. Многие сидячие и малоподвижные животные обновляют вокруг себя воду, либо создавая ее направленный ток, либо колебательными движениями способствуя ее перемешиванию.

Двустворчатым моллюскам для этой цели служат реснички, выстилающие стенки мантийной полости; ракообразным - работа брюшных или грудных ножек. Пиявки, личинки комаров-звонцов (мотыль), многие олигохеты колышут тело, высунувшись из грунта.



У некоторых видов встречается комбинирование водного и воздушного дыхания. Таковы двоякодышащие рыбы, сифонофоры дискофанты, многие легочные моллюски, ракообразные Gammarus lacustris и др. Вторично водные животные сохраняют обычно атмосферный тип дыхания как более выгодный энергетически и нуждаются, поэтому в контактах с воздушной средой, например ластоногие, китообразные, водяные жуки, личинки комаров и др.

В водоемах существует довольно значительное разнообразие температурных условий. Между верхними слоями воды с выраженными в них сезонными колебаниями температуры и нижними, где тепловой режим постоянен, существует зона температурного скачка, или термоклина. Термоклин резче выражен в теплых морях, где сильнее перепад температуры наружных и глубинных вод.

В связи с более устойчивым температурным режимом воды среди гидробионтов в значительно большей мере, чем среди населения суши, распространена стенотермность. Эвритермные виды встречаются в основном в мелких континентальных водоемах и на литорали морей высоких и умеренных широт, где значительны суточные и сезонные колебания температуры.

Солевой режим. Поддержание водного баланса гидробионтов имеет свою специфику. Если для наземных животных и растений наиболее важно обеспечение организма водой в условиях ее дефицита, то для гидробионтов не менее существенно поддержание определенного количества воды в теле при ее избытке в окружающей среде. Излишнее количество воды в клетках приводит к изменению в них осмотического давления и нарушению важнейших жизненных функций.

Большинство водных обитателей пойкилосмотичны: осмотическое давление в их теле зависит от солености окружающей воды. Поэтому для гидробионтов основной способ поддерживать свой солевой баланс - это избегать местообитаний с неподходящей соленостью.

Температурный режим водоемов более устойчив, чем на суше. Это связано с физическими свойствами воды, прежде всего высокой удельной теплоемкостью, благодаря которой получение или отдача значительного количества тепла не вызывает слишком резких изменений температуры.

Испарение воды с поверхности водоемов, при котором затрачивается около 2263,8 Дж/г, препятствует перегреванию нижних слоев, а образование льда, при котором выделяется теплота плавления (333,48 Дж/г), замедляет их охлаждение.

Амплитуда годовых колебаний температуры в верхних слоях океана не более 10-15 °C, в континентальных водоемах - 30-35 °C. Глубокие слои воды отличаются постоянством температуры.

ЛИТЕРАТУРА:

- 1. Зобов В.В. Экология животных [Электронный ресурс]. Учебное пособие: полный курс лекций. Казань, 2012.
- 2. Дауда Т. А., Кощаев А. Г. Д 21 Экология животных: Учебное пособие. СПб., 2015.
- 3. Антропогенные факторы изменения животного мира // Экология учебные материалы. URL: https://www.ecology-education.ru/index.php?Action=full&id=463. 2019.
- 4. Бейсенова А.С., Шилдебаев Ж.Б., Сауибаева Г.З. Экология. Алматы, 2001.
- 5. Сравнительная физиология животных: учебник для студентов высших учебных заведений. Санкт-петербург, 2010.