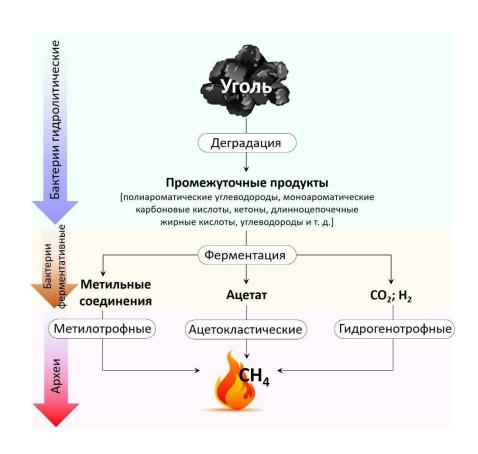
Краткая информация о проекте

Наименование	АР09057876 «Исследование казахстанских
	низкосортных углей на их потенциал биогенного
	преобразования в метан» (0121PK00072)
Актуальность	За последние десятилетия метан угольных пластов (МУП) стал ценным энергетическим ресурсом и, как ожидается, станет ключевым компонентом в проектах в области мировой энергетики в будущем. МУП считается нетрадиционным видом чистого топлива, потому что при его сжигании практически не образуется побочных продуктов / парниковых газов или они значительно меньше, чем при сжигании ископаемого топлива. В силу данных преимуществ и в ответ на быстро растущий спрос на энергоносители, необходимо приложить усилия для изучения потенциала МУП в казахстанских низкосортных углях с конечной целью более глубокого понимания и использования этого очень перспективного газового
	ресурса.
Цель	Внедрить новый подход со стратегией перехода от лабораторной к масштабной оценке потенциала биогенной конверсии угля в метан казахстанских низкосортных (лигнитных и полубитуминозных) углей.
Задачи	 Сбор и характеристика образцов угля из различных угольных бассейнов Казахстана с точки зрения их географии и истории осадконакопления. Знание природы и структуры угля имеет решающее значение для разработки эффективной стратегии разведки / эксплуатации. Сбор и идентификация эндогенных-экзогенных микробных сообществ из географически различных регионов и изучение их применимости в биоконверсии угля с помощью метагеномных подходов, основанных на анализе 16S рРНК. Выращивание и адаптация изолированных микробных сообществ с использованием углей разных видов как единственного источника углерода и энергии. Подробная характеристика влияния состава и численности микробных сообществ на биодоступность угля поможет в разработке стратегий повышения скорости и степени метаболизма угля. Изучение комбинированного воздействия отдельных аэробных и анаэробных микробных сообществ на предварительную обработку и биоконверсию (ферментацию и метаногенез) угля. Понимание ограничений и условий, которые поддерживают рост микробов, способствуют биогенному производству МУП. Измерение и оценка биодоступности угля, а также выхода метана в ряде контролируемых условий.

Определение биогеохимических показателей метаболических реакций и биосинтеза метана. Понимание взаимосвязи между составом сообщества, видом угля и производством метана.

- Изучение широкого диапазона условий эксплуатации и важных факторов окружающей среды (температура, рН и концентрация соли) для достижения наилучшей производительности системы.
- Изучение возможных причин прекращения образования метана при биоконверсии угля. Понимание механизмов ингибирования при биоконверсии угля в метан.
- Оптимизация биогазификации угля для достижения максимальной производительности. Стратегии могут включать микробиохимические стимуляции, предварительную обработку угля и манипулирование параметрами метаногенеза угля.
- Расширение биогенной конверсии метана в уголь и проведение экспериментов в реакторе в полевых условиях. Определение параметров и условий, которые следует учитывать при переносе стратегий по улучшению биогазификации угля, разработанных в небольших лабораторных исследованиях, в перспективные крупномасштабные применения.
- Определение судьбы остаточного (биообработанного) угля после регенерации метана. Успешные предприятия по конверсии биогенного угля в метан также будут рассматривать возможность использования остаточного угля.


Ожидаемые и достигнутые результаты

Результатом проекта станет изучение, оценка и характеристика химически и географически различных казахстанских низкосортных углей по их способности поддерживать производство микробного метана в условиях *ex-situ*. Потенциальная важность биогенного МУП как внутреннего источника энергии требует понимания биологического и химического процесса, который ведет к метаногенезу. Результаты этого исследования улучшат понимание данного процесса и предоставят информацию для разработки эффективной стратегии по усовершенствованию добычи метана в низкосортных угольных пластах в будущем.

Имена и фамилии членов исследовательской группы с их идентификаторами (Scopus Author ID, Researcher ID, ORCID, при наличии) и ссылками на соответствующие профили

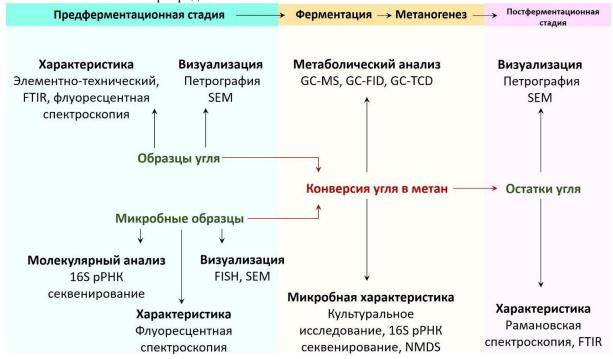
- 1. Акимбеков Нуралы Шардарбекович, PhD, профессор: Индекс Хирша 10. Scopus: 45160897400, Web of Science: A-5130–2014; ORCID: 0000-0002-5262-5155.
- 2. Тастамбек Қуаныш Талғатұлы, PhD: Индекс Хирша 6. Scopus: 57200176041, Web of Science: AAO-3781–2020; ORCID: 0000-0002-2338-8816.
- 3. Кожахметова Маржан Халидоллаевна, магистр технических наук, докторант: Индекс Хирша -1,

	Scopus: 57451762600, Web of Science: AAS-4987–2020;
	ORCID ID: 0000-0002-5879-3475
Список публикаций с ссылками	1. М.Х. Кожахметова, А.А. Алибекова, Д.А. Нусипов,
на них	Б.К. Каменов,. Isolation and identification of coal
	acclimated microorganisms from the activated sludge.
	«Вестник КазНУ. Серия Экологическая» №4 (77),
	2023 год (КОКСОН).
	https://doi.org/10.26577/EJE.2023.v77.i4.09
	2. Биогенная конверсия казахстанских низкосортных
	углей в метан: монография / Н.Ш. Акимбеков, А.А.
	Жұбанова, Қ.Т. Тастамбек, А.Б. Мылтықбаева, Д.К.
	Шерелхан, М.Х. Кожахметова, Н.П. Алтынбай. –
	Алматы: Everest, 2023.
	3. Nuraly S. Akimbekov, Ilya Digel, Kozhahmetova
	Marzhan, Kuanysh T. Tastambek, Dinara K. Sherelkhan,
	and Xiaohui Qiao. Microbial Co-processing and
	Beneficiation of Low-rank Coals for Clean Fuel
	Production: A Review. Engineered Science, 2023, 25,
	942. <u>10.30919/es942</u> . Процентиль 98, Q1.
	4. Nuraly S. Akimbekov, Ilya Digel, Kuanysh T.
	Tastambek, Marzhan Kozhahmetova, Dinara K.
	Sherelkhan, Zhandos Tauanov, Hydrogenotrophic
	methanogenesis in coal-bearing environments: Methane
	production, carbon sequestration, and hydrogen
	availability, International Journal of Hydrogen Energy,
	2023 <u>https://doi.org/10.1016/j.ijhydene.2023.09.223</u> .
** 1	Процентиль 95, Q1.
Информация о патентах	-

Рисунок 1. Предлагаемая схема био-преобразования угля в метан. Бактериальные сообщества (*Firmicutes, Spirochetes, Bacteroidetes* и все подгруппы *Proteobacteria*) последовательно расщепляют сложный углерод в угле до промежуточных и простых побочных продуктов. Некоторые из побочных продуктов бактериальной биодеградации являются субстратами, необходимыми метаногенным археям (*Methanobacteriales, Methanomicrobiales, Methanosarcinales, Methanococcales* и *Methanopyrales*) для производства метанового газа.

Три основных схемы для производства археального метана — это гидрогенотрофические (уравнение 1), ацетокластические (уравнение 2) и метилотрофные (уравнение 3) реакции:

$$CH_3COOH \rightarrow CH_4 + CO_2 \tag{1}$$


Ацетокластическая реакция: $\Delta G = -31 \text{ кДж/моль}$

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O \tag{2}$$

Гидрогенотрофическая реакция: $\Delta G = -136 \text{ кДж/моль}$

$$4\text{CH}_3\text{OH} \to 3\text{CH}_4 + \text{CO2} + 2\text{H}_2\text{O}$$
 (3)
Метилотрофная реакция: $\Delta G = -105$ кДж/моль

В разных угольных пластах могут присутствовать различные метаногены и образование метана будет происходить разными путями. Соответствующие метаногенные схемы также могут отличаться в разных угольных бассейнах, месторождениях и скважинах и могут зависеть от физикохимических свойств микросреды.

Рисунок 2. Методы анализа угля, микробных сообществ и метаболитов в конверсии угля в метан. FTIR, Фурье-ИК-спектроскопия; FISH, флуоресцентная гибридизация *in situ*; SEM, сканирующая электронная микроскопия; GC-MS, газовая хроматография-масс-спектрометрия; GC-FID, газовая хроматография с пламенно-ионизационным детектором; GC-TCD, газовая хроматография с детектором теплопроводности; NMDS, неметрическое многомерное масштабирование.